Renforcer l’isolation du ballon de stockage

Autrefois, comme mesure d’économie d’énergie, on aurait proposé de diminuer la température de l’eau pour limiter les pertes de tout le réseau. Passer de 60°C à 45°C permet de diminuer les pertes de l’ordre de 30 %. De plus, avec des températures d’eau inférieures à 60°C, les risques d’entartrage et de corrosion diminuent fortement.

Mais la gestion de la légionelle impose aujourd’hui de privilégier un stockage à une température minimale de 60°C, surtout si des douches sont présentes sur le réseau (la légionelle se transmet par inhalation de micro-gouttelettes).

Tout particulièrement, on examinera si le fond du ballon est isolé (parfois l’isolation ne couvre que les parties verticales), car à cet endroit, la stagnation d’eau tiède est propice au développement de la bactérie. Une isolation urgente s’impose

A priori, un stockage à haute température ne génère pas en soi une consommation énergétique élevée… pour autant qu’une isolation renforcée limite drastiquement les pertes.

Évaluer

Pour plus d’infos sur la rentabilité de l’isolation d’un ballon accumulateur.

Concevoir

Pour plus d’infos sur le choix de l’isolation d’un ballon accumulateur. !

La mise en œuvre nécessite un certain soin. Dans une campagne de mesures sur site, l’EDF a constaté que les pertes réelles dépassent souvent le double de la valeur obtenue par calcul théorique. La mise en œuvre pas toujours aisée de l’isolation en jaquette souple génère des courants convectifs non contrôlés (c.à.d. un effet de cheminée entre le ballon et l’isolant). Le calorifuge sous tôle galvanisée est plus hermétique.

Et les pertes augmentent avec le vieillissement de l’isolant.

L’intention de départ était louable…


Améliorer la stratification des températures

Il est difficile d’améliorer la stratification des températures dans un ballon existant (voir techniques d’évaluation de la stratification). En pratique, une intervention ne se justifie que dans un cas assez critique : celui d’un ballon placé horizontalement.

Il est cependant également possible de renforcer l’isolation des tuyauteries de raccordement et de la boucle de circulation, pour limiter les thermo-circulations d’eau parasites.


Réduire le volume du réservoir d’eau chaude

Lorsque la capacité des ballons est trop élevée et qu’il en existe plusieurs, la mise hors service d’un ballon est alors justifiée pour limiter les pertes par les parois.


Si une telle situation se rencontre systématiquement en fin de journée,
il y a intérêt à couper l’alimentation du 3ème ballon.

Calculs

Pour évaluer les pertes énergétiques d’un ballon non utilisé.

Concevoir

Pour dimensionner l’installation nécessaire,

Décentraliser la production d’eau chaude

Pour 2 litres d’eau utiles, 4 restent dans la tuyauterie…

S’il existe des points de puisage à faibles besoins et forts éloignés de la production centrale, il peut être avantageux de prévoir des petits chauffe-eau individuels : soit des instantanés gaz, soit des petits accumulateurs électriques. Cela permet d’augmenter le confort (diminution du temps d’attente) et de diminuer les pertes (pertes de l’eau chaude « qui reste » dans les tuyauteries).

Évaluer

Pour évaluer la rentabilité de la décentralisation.

Produire près du consommateur…

L’arrivée des préparateurs instantanés gaz avec cheminée « ventouse » permet aujourd’hui de reposer la question de l’emplacement du préparateur d’eau chaude sanitaire. Production en centrale de chauffe en sous-sol, à grande distance des utilisateurs, avec une chaudière surdimensionnée en été ? Ou au contraire, des préparateurs décentralisés proche des points de soutirage. On peut sans danger faire circuler une conduite de gaz dans le bâtiment.

On peut ainsi imaginer, lors d’une rénovation du système, que des productions différentes soient réalisées pour des groupes d’utilisateurs différents (un réseau « cuisine et buanderie », un réseau « sanitaires », par exemple). Cela permet notamment de générer des réseaux avec des températures différentes.

Il est également possible de disposer d’accumulateurs électriques décentralisés. Mais attention, dans le bilan, on tiendra compte qu’il s’agit souvent de courant électrique de jour (dont le prix du kWh est 2 à 3 fois plus élevé que le prix du kWh thermique…), sauf si une horloge est placée sur son alimentation.

...mais multiplier la puissance installée.
La décentralisation apporte un inconvénient : la puissance de chauffage totale à installer sera augmentée puisqu’en chaque lieu de puisage, on doit prévoir le débit d’eau maximum. Lorsque l’installation est centralisée au contraire, un effet de foisonnement a lieu. Par exemple, un ballon de stockage centralisé fournira l’eau des douches à un autre moment que l’eau de la vaisselle : les volumes à stocker ne doivent pas être additionné.


Placer un capteur solaire à eau chaude

La pose des capteurs solaires pour préchauffer l’eau chaude sanitaire est aujourd’hui une technique qui est arrivée à maturité; maturité technique et financière.

Les applications solaires les plus intéressantes économiquement se retrouvent parmi les établissements consommant de grandes quantités d’eau chaude : les hôpitaux, les piscines et les établissements d’accueil social (maisons de repos, centres d’accueil pour personnes handicapées, …), les internats, grands hôtels, centres de vacances, immeubles de plus de 15 logements, restaurants d’entreprise,…

A tout le moins, si une rénovation de la production d’eau chaude sanitaire est à l’ordre du jour, si une toiture plate ou à inclinaison sud est disponible, une étude de préfaisabilité s’impose. Des petits logiciels Excel vous permettent de faire le point rapidement.

Concevoir

Pour plus de détails sur les coûts, la rentabilité d’un projet, les outils d’aides à la décision.

Études de cas

Pour parcourir un exemple audit solaire établi pour le home La Charmille à Gembloux.

De nouveau, on prendra en compte que le chauffage de l’eau chaude sanitaire par un système solaire risque de ne pas être suffisant pour élever la température moyenne de l’eau sanitaire à une valeur suffisante (55-60°C) afin d’éviter de se trouver dans la plage de prolifération des légionelles. Il est donc nécessaire de considérer les systèmes solaires comme un moyen de préchauffage de l’eau sanitaire en complément d’une production classique.


Produire l’eau chaude avec une pompe à chaleur ?

Il est possible de produire de l’eau chaude sanitaire au moyen d’une pompe à chaleur. Différentes technologies sont possibles. De la chaleur « gratuite » sera extraite d’une source (air extérieur, nappe phréatique, …) et sera communiquée au ballon d’eau chaude.

L’avantage est mesuré par le COP (Coefficient de Performance) de la pompe à chaleur : un COP de 3 signifie qu’il faut donner 1 kWh électrique au compresseur pour fournir 3 kWh de chaleur dans le ballon d’eau chaude. Au passage, 2 kWh auront donc été pompés sur la source.

Rentabilité du projet ?

Une telle amélioration est surtout rentable si la situation de départ est une installation de production d’ECS électrique. La consommation électrique pourra être divisée par le COP. Ainsi, dans le programme de promotion des économies d’énergie suisse « Ravel », on annonce un COP annuel de 3 pour une pompe à chaleur Air-Eau et de 4,5 si la pompe capte l’énergie dans le sol (ce dernier chiffre nous paraît exagéré puisqu’une campagne de mesure faite par l’Université de Mons sur des installations de chauffage de bâtiments révèle des COP annuels de l’ordre de 2,5 à 2,9).

Mais attention, ces chiffres ne s’appliquent que si le chauffage de l’eau est limité à 50°C. Si le stockage est prévu à 60°C, une batterie électrique doit fournir le complément avec de l’électricité directe (–> COP = 1); ce qui est le cas lorsqu’on considère qu’une température de production d’eau de 60 °C est nécessaire pour éviter la prolifération des légionelles.

Imaginons le chauffage d’1 m³ de 10 à 60°C par une pompe à chaleur air-eau.

L’énergie nécessaire au chauffage de 10 à 50°C par la PAC sera de :

Énergie = 1 m³ x 1,163 kWh/m³ x (50 – 10) / 3 = 15,5 kWh

L’énergie complémentaire pour passer de 50 à 60°C sera de :

Energie = 1 m³ x 1,163 kWh/m³ x (60 – 50) = 11,6 kWh

Le COP moyen annuel est alors de :

COP = Energie produite / Energie fournie
= [1 m³ x 1,163 kWh/m³ x (60 – 10)] / [15,5 + 11,6]
= 2,15

On sera donc très attentif aux instructions fournies par le constructeur. Ceci d’autant plus qu’il n’existe pas de standard de mesure des performances d’une PAC, du moins pour en évaluer son rendement saisonnier. Il faut bien analyser

  • Pour quelle température de la source le COP est fourni ?
  • Jusqu’à quelle température l’évaporateur peut extraire la chaleur de la source ?
  • Jusqu’à quelle température le condenseur peut chauffer le ballon ?

On aura également tout intérêt à conserver une température d’eau dans le ballon la plus basse possible (45°C par exemple). Mais ceci suppose un réservoir suffisamment grand. Par ailleurs, cela peut aller à l’encontre de la protection anti-légionelle. Au minimum, on prévoiera une montée temporaire de chauffage à 70°C par une résistance électrique toutes les semaines ou tous les 15 jours.

Sources particulières

Le placement d’une pompe à chaleur doit surtout s’envisager s’il existe une source particulière de chaleur disponible dans le bâtiment (air extrait ? process ? four ?…). Par exemple, refroidir (et déshumidifier par la même occasion) une buanderie surchauffée et produire ainsi de l’eau chaude sanitaire : coup double !

Il faut par contre éviter de placer une pompe à chaleur pour « récupérer la chaleur disponible en cave » :

  • D’abord, parce qu’il est plus logique d’éviter les pertes qui sont à l’origine de cette chaleur (chaudière, tuyauteries, …) que de les récupérer (il suffira d’ailleurs de changer de chaudière pour perdre la source !).

 

  • Ensuite, parce qu’un niveau de température élevé ne traduit pas forcément une quantité de chaleur importante (cela peut traduire une mauvaise ventilation de la cave, par exemple).

 

  • Enfin, parce qu’une partie de cette chaleur est déjà récupérée par le plancher du rez de chaussée.

Concevoir

Pour plus d’info sur le choix et la mise en place d’une pompe à chaleur pour la préparation d’eau chaude sanitaire.

Désolidariser chauffage de l’eau chaude et chauffage du bâtiment ?

Dans certaines installations, le chauffage de l’eau chaude sanitaire est combiné au chauffage du bâtiment.

L’eau chaude sanitaire est alors un utilisateur au même titre que la batterie de chauffe du groupe de préparation d’air. Elle bénéficie du rendement de production saisonnier de l’ensemble, ce qui est bénéfique.

En dehors de la période de fonctionnement du chauffage, la question se pose de l’opportunité de découpler ce système et de passer, par exemple, à un système de production d’eau chaude indépendant à l’électricité ?

Il est difficile de trancher ce débat dans l’absolu. Voici les arguments de part et d’autres.

Arguments favorables au découplage

Le rendement de production de l’eau chaude sanitaire peut se dégrader en été :

  • si la chaudière est maintenue en température en permanence sur son aquastat,

 

 

  • si la chaudière est beaucoup trop puissante par rapport aux besoins de l’eau chaude sanitaire (les cycles de fonctionnement du brûleur seront courts et les démarrages fréquents, ce qui est synonyme de mauvaise combustion),

 

  • si l’ensemble du réseau primaire doit être maintenu en température uniquement pour le chauffage de l’eau sanitaire.

Un rendement inférieur à 20 % est alors tout à fait possible…

On peut envisager la possibilité de greffer une résistance électrique sur le ballon accumulateur. Tout particulièrement si les besoins d’eau chaude sont faibles (mais peut-être qu’alors un simple ballon près de la cuisine suffit ?).

En rénovation, tout dépendra des performances de la production combinée existante.

Par exemple, l’association CEDICOL a réalisé une mesure sur site (source : magazine « L’entreprise », mars 90) dont il ressort un rendement saisonnier annuel de production d’eau chaude de 71 % et un rendement d’été de 49 % :

La production de cette installation domestique est, en été, de 186 litres d’eau chaude par jour.

L’installation comprend une chaudière au fuel de 27 kW alimentant un ballon de stockage de 160 litres. La chaudière est régulée en température glissante avec une priorité sanitaire. Cela signifie qu’entre deux demandes du ballon, la chaudière redescend en température.

Durant l’été 88, la chaudière à consommé 189 litres de fuel (soit 1 880 kWh) pour produire 24 180 litres d’eau chaude (soit 939 kWh). Le rendement de production en été est donc de 939 / 1 880 kWh = 49 %.

Pour l’ensemble de l’année, le système produit 42 150 litres d’eau chaude avec un rendement saisonnier de 71 %.

Séparer la production d’eau chaude en été, et produire cette dernière au moyen de l’électricité permettrait de gagner :

1 880 [kWh] x (1 – 49 % / 93 %) = 890 [kWh]

Le gain financier est de :

  • Facture d’été en production combinée : 189 [litres] x 0,2116 [€/litres] = 40 [€]
  • Facture d’été en production séparée électrique : 990 [kWh] x 0,044 [€/kWh] = 44 [€]
  • Perte : 4 [€/an]

On se trouve dans la situation la plus favorable de production combinée, avec une chaudière fonctionnant en température glissante. Dans le cas d’une ancienne chaudière restant à température constante tout l’été (de 70°C, par exemple), il n’est pas rare d’avoir des rendements de production inférieurs à 20 % en été !

Dans ce cas, le bilan serait alors le suivant :

  • Consommation en fuel d’été : 1 880 [kWh] x 49 [%] / 20 [%] = 4 606 [kWh] ou 460 [litres fuel]
  • Gain énergétique : 4 606 [kWh] x (1 – 20 % / 93 %) = 3 616 [kWh]
  • Facture d’été en production combinée : 460 [litres] x 0,2116 [€/litres] = 97 [€]
  • Facture d’été en production séparée : 990 [kWh] x 0,044 [€/kWh] = 44 [€]
  • Gain : 53 [€/an]

La solution du ballon électrique est cependant à éviter s’il existe une boucle de circulation mal isolée générant des pertes permanentes élevées :

En effet, l’eau froide de retour perturbe la stratification des températures dans le ballon. Plusieurs situations peuvent se produire : soit l’eau chaude n’est plus assurée, soit le thermostat s’enclenche pour réchauffer le ballon, soit un réchauffage de boucle maintient la température à son niveau. Mais ceci génère un chauffage électrique de jour assez coûteux.

Arguments favorables au maintien de la production combinée

Si la chaudière est suffisamment performante, la question du maintien de la production de chaleur combinée se justifiera la plupart du temps. Après tout, le prix de l’énergie électrique est double de celui de l’énergie thermique, en moyenne.

On peut dès lors envisager des alternatives :

  • La première est de limiter au maximum la puissance de chaudière utilisée :
    • vérifier le bon fonctionnement en cascade des chaudières et en particulier des vannes d’isolement motorisées des chaudières,
    • si les chaudières ne sont pas équipées de vannes d’isolement motorisées, mettre les chaudières inutiles en été à l’arrêt et fermer manuellement leur vanne d’isolement,
    • vérifier la bonne régulation des allures de brûleur de manière à favoriser le fonctionnement de la chaudière en petite puissance.
  • La deuxième consisterait à fractionner la puissance de chauffe et à installer une petite chaudière en cascade dont la puissance convient pour le chauffage de l’eau chaude sanitaire en été. Elle sera utile également pour les relances de début de journée en mi-saison, évitant ainsi la mise en température de la chaudière principale.
Exemple théorique.

Comparons les pertes d’une installation combinée et d’une chaudière propre à la production d’eau chaude sanitaire.

Hypothèse : il s’agit d’une installation équipant un home pour personnes agées. La consommation globale en eau chaude du bâtiment est estimée à 1000 m³ d’eau à 60°C par an. Le besoin énergétique pour chauffer cette eau est de :

1,16 [kWh/m³.°C] x 1000 [m³/an] x (60 [°C] – 10 [°C]) = 58 000 [kWh/an]

dont 38 400 [kWh/an] durant la saison de chauffe et 19 600 [kWh/an] en été.

Installation combinée : une chaudière de 650 kW moderne ayant un coefficient de perte à l’arrêt (à 70°C) de 0,3 % de la puissance chaudière. Cette chaudière reste en permanence à une température de 70°C, été comme hiver, pour produire l’eau chaude sanitaire. Elle alimente en permanence un collecteur de distribution de 20 m (DN 100). En été, son rendement de combustion baisse de 2 % suite à un fonctionnement par de nombreux cycles courts (la puissance de l’échangeur sanitaire étant nettement inférieure à la puissance de la chaudière). Il passe de 92% à 90%.

Installation séparée : une chaudière de 500 kW pour le chauffage et une chaudière de 150 kW pour la production d’eau chaude sanitaire. A 70°C, ces deux chaudières ont le même coefficient de perte à l’arrêt que la chaudière de 650 kW. La chaudière de chauffage est régulée en température glissante (température moyenne de 43°C) et arrêtée en été. Ses pertes à l’arrêt sont ainsi réduites à 0,1 %. La chaudière de 150 kW est, elle maintenue à 70°C toute l’année.

Pertes

Installation combinée
[kWh/an]

Installation séparée
[kWh/an]

Différence
[kWh/an]

En hiver (5 800 h/an)

Pertes de combustion 38 400 [kWh/an] x (1 – 0,92)
= 3 072 [kWh/an]
0 [kWh/an]
Pertes à l’arrêt de la chaudière « chauffage » 0,003 x 650 [kW] x 3 925 [h/an] / 0,92
= 8 320 [kWh/an] (*)
0,001 x 500 [kW] x 4 000 [h/an] / 0,92 = 2 174 [kWh/an] 6 146 [kWh/an]
Pertes à l’arrêt de la chaudière « eau chaude » 0,003 x 150 [kW] x 5 500 [h/an] / 0,92 = 2 055 [kWh/an] – 2 055 [kWh/an]
Pertes du collecteur « chauffage » 16,7 [W/m] x 20 [m] x 5 800 [h/an] / 0,92
= 2 106 [kWh/an]
7,7 [W/m] x 20 [m] x 5 800 [h/an] / 0,92 = 971 [kWh/an] 1 135 [kWh/an]
Pertes d’hiver 3 072 [kWh/an] + 8 320 [kWh/an] + 2 106 [kWh/an] = 13 498 [kWh/an] 3 072 [kWh/an] + 2 174 [kWh/an] + 2 055 [kWh/an] + 971 [kWh/an] = 8 272 [kWh/an] 5 226 [kWh/an]

En été (2 960 h/an)

Pertes de combustion 19 600 [kWh/an] x (1 – 0,90)
= 1 960 [kWh/an]
19 600 [kWh/an] x (1 – 0,92)
= 1 568 [kWh/an]
392 [kWh/an]
Pertes à l’arrêt de la chaudière « chauffage » 0,003 x 650 [kW] x 2 935 [h/an] / 0,90
= 6 359 [kWh/an]
6 359 [kWh/an]
Pertes à l’arrêt de la chaudière « eau chaude » 0,003 x 150 [kW] x 2 860 [h/an] / 0,92 = 1 399 [kWh/an] – 1 399 [kWh/an]
Pertes du collecteur « chauffage » 16,7 [W/m] x 20 [m] x 2 960 [h/an] / 0,90 = 1 098 [kWh/an] 1 098 [kWh/an]
Pertes d’été 1 960 [kWh/an] + 6 359 [kWh/an] + 1 098 [kWh/an] = 9 417 [kWh/an] 1 568 [kWh/an] + 1 399 [kWh/an] = 2 967 [kWh/an] 6 450 [kWh/an]

Sur l’année

Bilan global – pertes totales 22 915 [kWh/an] 11 239 [kWh/an] 11 676 [kWh/an] ou 1 168 [m³gaz/an]

L’installation d’une chaudière combinée entraînerait donc une surconsommation d’environ 1 200 m³ de gaz par an ou une dépense complémentaire d’environ 275 € par an.

(*) Justification des heures prises en compte :
La saison de chauffe dure 5 800 [h/an]. La chaudière de 650 kW tourne 1 800 h/an pour le chauffage et 100 h/an pour l’eau chaude sanitaire (75 en saison de chauffe et 25 en été). La chaudière reste donc chaude sans que son brûleur ne fonctionne durant 3 925 h/an. La chaudière de 500 kW tourne 1 800 h/an pour le chauffage et est en attente chaude 4 000 h/an. La chaudière de 150 kW tourne 400 h/an (dont 100 h en été.

  • La troisième consisterait à limiter l’enclenchement de la chaudière dans le temps. En effet, si la demande peut être couverte facilement par une ou deux relances de la chaudière sur la journée, une horloge peut imposer les plages horaires durant lesquelles le réchauffage du ballon est autorisé. Par exemple : de 5 à 7 heures du matin et de 16 à 18 heures en fin de journée. Ainsi, on évitera de multiples remises en route de la chaudière tout au long de la journée !
  • Enfin, puisqu’il s’agit de besoins d’été, ils peuvent également être couverts presque totalement par une installation de capteurs solaires. Le moment est alors bien choisi pour étudier la faisabilité d’un tel investissement. Mais il faudra s’assurer que le système de chauffage dispose Dun mode « veille » très économe lorsque le soleil est actif.

Une campagne de mesure ?

On le voit, le choix est totalement dépendant de la situation locale.

Il est possible d’évaluer plus précisément sa situation en mesurant la consommation de combustible l’été et la quantité d’eau chaude consommée. À défaut de disposer d’un compteur d’eau spécifique sur le départ d’eau chaude, on pourra faire une évaluation grossière sur base des débits des équipements sanitaires (autant de douches à 40 litres/douche, etc…).

Très approximativement, on retrouvera le rendement de production de l’eau chaude par les formules :

Énergie utile [kWh] = Nbre de m³ à 60°C x 1,163 [kWh/m².K] x (60 – 10) [K]

Energie fournie [kWh] = Nbre de m³ de gaz ou de litres de fuel x 10

Rendement = Energie utile / Energie fournie

Exemple : s’il a fallu 6 500 m³ de gaz pour produire 220 m³ d’eau chaude à 60°C, le rendement de production est de :

220 x 1,163 x (60 – 10) / 6 500 x 10 = 20 %

A comparer avec les rendements de production des systèmes neufs et avec le coût d’un nouveau système.

En général, décider de désolidariser l’eau chaude sanitaire sous entend de se poser la question d’une rénovation plus fondamentale de la production de chaleur.

Concevoir

Pour plus d’informations sur la conception d’une installation d’eau chaude sanitaire.

Intégrer une priorité eau chaude sanitaire

Conflit entre chauffage du bâtiment et chauffage de l’eau chaude sanitaire

Si la chaudière réalise à la fois le chauffage du bâtiment et le chauffage de l’eau chaude sanitaire, un conflit de température apparaît :

  • Pour augmenter le rendement d’une chaudière, il est intéressant de travailler à basse température, surtout s’il s’agit d’une chaudière récente (dite à « très basse température » ou à condensation). Par exemple, la température de l’aquastat sera adaptée en fonction de la température extérieure afin de ne chauffer qu’à la température minimale nécessaire.
  • Pour réchauffer l’eau chaude sanitaire, une température minimale d’eau de chauffage à 65 ou 70°C est nécessaire (par exemple pour réchauffer un ballon de stockage à 60°C). Temporairement, par mesure de précaution anti-légionelle, une montée de l’eau du ballon de stockage à 70°C est même parfois organisée.

Régulation avec « priorité eau chaude sanitaire »

Pour éviter de maintenir en permanence les chaudières à haute température, il est possible de mettre en place une régulation du type « priorité eau chaude sanitaire » : la chaudière ne monte en température qu’au moment du réchauffage du ballon. En principe, le ou les autres circulateurs des circuits de chauffage peuvent alors éventuellement être arrêtés (l’inertie du bâtiment est suffisante).

C’est une technique courante dans le domestique. On comprend qu’elle ne puisse s’appliquer dans le tertiaire que si la production d’eau chaude sanitaire est faible par rapport au chauffage du bâtiment :

  • Ce sera tout particulièrement le cas lorsque l’eau chaude est stockée dans un ballon dont la contenance en eau est telle que la chaudière n’est sollicitée que 2 ou 3 fois par jour.
  • À l’opposé, on ne pourra appliquer cette technique en présence d’un échangeur à plaques instantané qui doit pouvoir réagir au quart de tour !

L’intérêt de la « priorité sanitaire » est d’autant plus important :

  • Que la chaudière présente des pertes à l’arrêt élevées. On pense ici tout particulièrement aux chaudières gaz atmosphériques dont l’échangeur est en communication ouverte avec la cheminée. Il faut que ces chaudières soient toujours maintenues à la plus basse température possible (température définie par leur conception et donc par le fabricant).

  • Que la chaudière alimente le ballon d’eau chaude aussi en été. Dans ce cas, la régulation permettra d’arrêter totalement la chaudière (température retombant à 20°C) sauf durant les périodes de chauffage de l’eau sanitaire.

Des relances intempestives du chauffage de l’eau sanitaire à limiter par une horloge

Si l’on constate que la demande peut être couverte facilement par une ou deux relances de la chaudière sur la journée, il est utile, en plus de la priorité sanitaire, de greffer une horloge sur la régulation pour imposer les plages horaires durant lesquelles le réchauffage du ballon est autorisé. Par exemple : de 5 à 7 heures du matin et de 16 à 18 heures en fin de journée. Ainsi, on évitera de remettre la chaudière en route pour le puisage d’un seau d’eau ! C’est surtout avantageux en été, bien sûr, mais ce l’est également en hiver puisque la température moyenne d’une chaudière régulée en fonction de la température extérieure est de 43°C sur la saison de chauffe.

Cette technique a fait l’objet d’une simulation sur une installation ECS domestique (consommation de 45 m³ à 55°C). Voici les rendements obtenus (source « Chauffage et production d’ECS » – M. Rizzo – Éditions Parisiennes) :

Chauffage de l’ECS constant

Chauffage de l’ECS programmé

Été

44 % 66 %

Hiver

69 % 80 %

Année

59 % 75 %

Soit un gain moyen annuel de 21 % sur la consommation relative à la production d’eau chaude.

On peut tester manuellement cette technique en été, en coupant la chaudière au matin et en observant « jusque quand » la réserve d’eau chaude assure les besoins du bâtiment.

Alternative

S’il est difficile de planifier les périodes de chauffage de l’eau chaude, il est possible d’obtenir un effet similaire en régulant le ballon au moyen d’un thermostat à fort différentiel situé en partie haute (au moins au 2/3 de la hauteur). Ce thermostat arrête la pompe de circulation du réchauffeur quand on atteint la valeur désirée, généralement 60 à 65°C et remet le chauffage en service quand l’eau tombe à 40/45°C.


Remplacer la veilleuse par un allumage électronique ?

La veilleuse consomme en pure perte environ 120 m³ de gaz par an, soit un coût d’environ 40 € par an. On a même parlé de veilleuse consommant 300 m³/an, mais alors il s’agit d’un très vieux chauffe-eau dont la veilleuse ressemble à un chalumeau !

Un allumage électronique est certainement plus performant, mais l’investissement n’est sans doute pas rentable sur des appareils existants.

À défaut, on peut imaginer (?) de couper cette veilleuse durant les périodes où la consommation d’ECS est nulle (WE, vacances,…).


Récupérer l’énergie au condenseur de la machine frigorifique ?

La machine frigorifique évacue de la chaleur vers l’extérieur. Or la production d’eau chaude sanitaire demande une fourniture de chaleur, au contraire. L’idée de récupérer la chaleur de l’un au bénéfice de l’autre est attirante.

En pratique, pour le groupe frigorifique, chauffer l’eau sanitaire de 10 à 30°C est très efficace, effectivement. Par contre, chauffer l’eau de 30 à 60°C est difficile. Sous prétexte de récupération, la machine frigorifique finit par avoir un très mauvais rendement : le compresseur doit augmenter son taux de compression pour atteindre les hautes températures !

Cette technique est donc à privilégier pour les installations où la demande d’eau chaude sanitaire est très importante (hôtels, restaurants, hôpitaux, homes,…) et pour lesquels on assurera le préchauffage de l’eau sanitaire, sans perturber le cycle de la machine frigorifique. De l’ordre de 20 à 25 % de la puissance frigorifique peuvent être alors récupérés.

Schéma 1 : un échangeur thermique parcouru par le fluide frigorigène est inséré au bas d’un ballon d’eau chaude.

Par effet de cheminée, la chaleur sera donnée à la zone la plus froide du ballon puis communiquée à l’ensemble du réservoir. L’échangeur est équipé d’une double paroi de sécurité, selon DIN 1988.

Schéma 2 : un ballon intermédiaire à double échange est intégré comme interface

On peut également prévoir un système à double échange : deux échangeurs sont intégrés dans un même ballon (1). Le premier échangeur est celui du condenseur de la machine frigorifique, le deuxième est le serpentin de préchauffage de l’eau chaude sanitaire.

Un appoint en série est prévu (2).

Schéma 3 : en présence d’une boucle de distribution

Le régulateur de température de départ de la boucle utilise l’appoint lorsque le niveau de température du ballon est insuffisant.

Améliorer

Motivé ? Alors, découvrez plus de détails sur le fonctionnement côté machine frigorifique en cliquant ici !

Supprimer les pertes vers l’égout du groupe de sécurité

En amont d’un chauffe-eau, un groupe de sécurité est prévu, équipé d’une soupape de sûreté. Il se peut que cette soupape laisse échapper de l’eau chaude vers l’égout.

Il peut être utile de placer un récipient entre l’échappement et l’égout pour évaluer l’importance de ce phénomène car il est fortement amplifié la nuit, ce qui est plus difficile à percevoir.

Si l’accès est impossible, peut être est-il possible de s’en rendre compte via le compteur d’eau la nuit ?

Si l’écoulement est sporadique

Cet écoulement correspond à la dilatation de l’eau lors du chauffage : la pression monte et l’excédent d’eau est évacué vers l’égout. A chaque remontée en température du ballon (soit pratiquement chaque nuit pour un ballon électrique), 1/30 de la capacité du boiler est évacuée par la soupape de sécurité. Par tranche de 100 litres de réservoir, cela représente annuellement plus d’un m³ d’eau chaude expédiée à l’égout.

Si la soupape de sécurité est ainsi constamment sollicitée, elle finit par s’entartrer et perdre, dans un goutte à goutte permanent, une quantité d’eau chaude 10 à 20 fois plus importante.

D’autant plus que, sur le plan réglementaire, un groupe de sécurité qui est chaque jour sollicité ne peut plus être considéré comme un organe de sécurité, mais bien comme un organe de régulation. Par souci de sécurité, il devrait donc être complété par une deuxième soupape de sécurité. Cela peut faire sourire, mais le directeur de l’école de Court St Etienne qui a vu son ballon d’eau chaude traverser la toiture et retomber près de la gare ne souriait pas !

Il s’agit là d’un mauvais usage d’un équipement de sécurité.

Nous pensons qu’il est très utile de placer un vase d’expansion hermétique sur l’arrivée d’eau froide sanitaire. Ces vases sont disponibles en capacités de 8 à 500 litres, à sélectionner via les tables fournies par les constructeurs.

Exemple de dimensionnement pour un ballon de 100 litres.

Hypothèses : eau froide à 10°C, eau chauffée à 65°C, pression d’alimentation en eau à 4 bars max, pression de tarage de la soupape de sécurité à 7 bars, facteur de pression 0,375 entre 4 et 7 bars (formule de Boyle-Mariotte).

Dilatation de l’eau entre 10 et 65°C : 0,0195 litre/litre

Volume du vase d’expansion :

0,0195 x 100 / 0,375 = 5,2 litres

On installera donc un ballon de 8 litres prégonflé à 4 bars.

(source : Installateur 02/99).

Si l’écoulement est permanent

Les soupapes de sécurité sont tarées à 7 bars. Si la pression du réseau dépasse cette valeur (fond de vallée, remontée classique de la pression du réseau durant la nuit), ou si le réglage de la soupape est défectueux, il est possible que ces pertes soient pratiquement permanentes.

La solution consiste à placer un réducteur de pression sur l’arrivée d’eau. C’est bien sur l’arrivée générale de l’eau dans le bâtiment qu’il faut le placer car son montage sur la seule production d’eau chaude sanitaire entraînerait un déséquilibre des pressions entre les réseaux d’eau froide et d’eau chaude, empêchant alors le bon fonctionnement des robinetteries.


Si chauffage électrique, chauffer l’eau la nuit

Étant donné le coût de l’électricité, une horloge ou une télécommande sur le réseau du distributeur commanderont la charge durant les heures creuses (la nuit ou le WE).

Ceci suppose que le volume de stockage est supérieur au puisage journalier. À défaut, on risque de tomber à court d’eau chaude en fin de journée, lors de puisages très importants.

Pour éviter cela, il est possible :

  • Soit d’augmenter la température de l’eau du ballon (ce qui implique des pertes permanentes supplémentaires et la nécessité d’un bon mitigeur à la sortie pour éviter tout risque se brûlure).

 

  • Soit de dédoubler le ballon (l’avantage de l’électricité est de pouvoir décentraliser la production). Si certains points de puisage sont fort éloignés du ballon, on y gagnera à réaliser cette solution.

 

  • Soit d’équiper l’appareil d’une deuxième résistance : l’élément chauffant inférieur assure la charge nocturne à bas tarif, alors que l’élément chauffant supérieur couvre les demandes de pointe en eau chaude durant la journée, soit environ le 1/3 supérieur du ballon. L’enclenchement simultané des deux résistances n’est généralement pas autorisé en raison de la puissance cumulée.


Si chauffage électrique, délester le chauffage de l’eau en période de pointe

Si le fonctionnement de jour est malgré tout nécessaire, le placement d’un délesteur interdira l’enclenchement de l’appareil en période de pointe.

Le ballon d’eau chaude électrique est l’équipement électrique idéal pour un délestage : il représente une puissance assez élevée et sa coupure ne gêne pratiquement pas la production d’eau chaude. Il faut se rendre compte que le délesteur n’intervient que 2 à 3 fois par jour, au moment de la pointe de puissance du bâtiment (généralement entre 11 et 13 heures). Il coupera par exemple l’alimentation électrique durant 5 minutes sur le quart d’heure. L’essentiel est qu’il soit coupé lorsque la friteuse fonctionne, par exemple.

Comme il ne s’agit pas d’une production instantanée, l’utilisateur ne s’apercevra de rien.

Techniques

Pour plus de détails sur le placement d’un délesteur.