• Création juin 2018.
  • Auteur : Claude Crabbé
  • Mise en page et Antidote OK, Sylvie

Les bureaux de la firme RADERMECKER INTERCHIMIE © JL DERU.

Un bâtiment neuf de bureaux et un hall de stockage ont été construits en 2015. Les bureaux ont été lauréats de l’appel à candidature dans le cadre de l’action Bâtiment Exemplaire en Wallonie. Dans cet esprit, de nombreux efforts ont été consentis à l’époque pour réaliser un bâtiment très performant en matière énergétique. Est-ce qu’à l’époque, ce bâtiment est déjà parvenu à répondre aux exigences Q-ZEN de 2021 ? C’est ce que nous allons vérifier.

Le bâtiment a été conçu par le bureau d’architecture CANEVAS et le bureau d’études GREISCH pour le compte de la firme RADERMECKER INTERCHIMIE.

Il est destiné à abriter des activités de stockage, de conditionnement et de distribution de produits chimiques. Il est constitué d’un auvent présentant une superficie au sol d’environ 1000 m² (20 m x 49.5 m). Cet auvent abrite également un bâtiment administratif de bureau de moins de 100 m².

Le système constructif pour réaliser le hall est basé sur l’utilisation de rayonnages à palettes comme éléments porteurs de la toiture. Utiliser ces rayonnages comme structure portante permet :

  • d’une part, de réduire les quantités de matériaux en se passant de structure supplémentaire pour la toiture ;
  • d’autre part, de les intégrer à la conception architecturale.

Plan général (extrait plan architecte).

Coupe générale (extrait plan architecte).

Les bureaux intégrés à la structure des rayonnages © JL DERU

Le hall de stockage n’est pas isolé. Il ne possède pas de façade. La hauteur sous toiture varie entre 7.50 m et 10.50 m.

Les versants de la toiture assurent un débordement de toiture suffisant pour protéger efficacement le stockage et l’entrée du bâtiment des intempéries. Le débordement joue également un rôle de protection solaire fixe pour les bureaux.

Les bureaux sont intégrés comme une boîte au sein des rayonnages. Ils sont réalisés en ossature bois et sont supportés par des portiques métalliques intégrés à la structure des rayonnages du niveau inférieur. Les panneaux ont été réalisés en usine.

 

Éléments préfabriqués en usine.

Bureaux plan (extrait plan architecte).

Bureaux coupe (extrait plan architecte).

Le parement de façade des bureaux est constitué de tôles métalliques à fines nervures de finition identique à celles utilisées en toiture. Les finitions intérieures des murs, planchers et plafonds sont en bois. La structure en bois de ces différentes parois est bourrée de cellulose.

L’intérieur des bureaux © JL DERU 1.

Conscients des enjeux énergétiques dans le futur, le maître de l’ouvrage a voulu dès 2012 investir dans un bâtiment performant en matière de consommation d’énergie et de confort.

L’objectif a été atteint, mais répond-il déjà aux exigences PEB de 2021 ?

Étanchéité à l’air

Un test de la mesure de l’étanchéité à l’air a été effectué conformément à la norme et aux prescriptions  supplémentaires de la Région wallonne. Grâce  à la conception de la couche d’étanchéité à l’air et au  soin apporté à sa mise en œuvre. Le niveau d’étanchéité à l’air mesuré en fin de travaux est de  v50 = 0,39 m³/hm².

Blower door test.      

  Étanchéité à l’air autour des châssis de fenêtres.

Installations techniques

Le chauffage est du type chauffage central avec panneaux diffusants alimentés en eau chaude par une pompe à chaleur air-eau  d’une puissance calorifique de 8 kW.

Pompe à chaleur air eau.    

   Panneau diffusant.

La ventilation mécanique de type D d’un débit de 435 m³/h est munie d’un récupérateur de chaleur d’un rendement de 82 % et d’une batterie de chauffe électrique d’une puissance de 3 kW pour pouvoir pulser l’air dans le bâtiment directement à bonne température.

Le groupe de ventilation.

L’eau chaude sanitaire (ECS) est produite par la pompe à chaleur du chauffage central et stockée dans un ballon de 200 litres qui sert deux douches, un évier et un vidoir.

Schéma de l’installation de distribution sanitaire.

L’éclairage est assuré par des appareils à basse consommation.

1.    des TL de 35 W

2.    des downlight LED compacts de format rond

La puissance moyenne pour l’éclairage est d’environ 1,8 W/100lux m².

Pièce du projet Apport par éclairage (W/m²)
Réunion 8,9
Bureau 8,9
Réception 10,8
Cuisine 7,5
Couloir 2,5
Entrée 2,1
Vestiaires hommes 3,7
Sanitaires hommes 4,4
Vestiaires femmes 3,4
Sanitaire femmes/PMR 2,8
Local technique 15,7

Puissance des luminaires installés dans les locaux.

Plan de l’installation électrique.

Le bâtiment a été évalué par rapport aux exigences PEB et, plus particulièrement, au standard Q-ZEN. Le fichier PEB initial encodé en 2012 a été analysé. Ensuite, il a été mis à jour en supposant un encodage en 2021.
Le nouveau bâtiment a comme fonction bureaux.

Il ne comporte qu’un seul volume protégé, une seule unité PEB, une seule zone de ventilation et une seule partie fonctionnelle.

Il n’y a qu’une seule partie fonctionnelle grâce à la notion d’espace connexe et aux règles d’assimilations. De manière générale, pour chaque espace individuel devrait exister une partie fonctionnelle, mais cela en créerait un nombre important et par conséquent, un encodage long et fastidieux.

Les espaces connexes ayant une autre fonction que la partie fonctionnelle principale du bâtiment, mais qui fonctionnent « avec » la partie fonctionnelle en question sont réunis avec celle-ci. Dans le cas que nous étudions, l’espace fonctionnel principal est celui des bureaux et les espaces connexes sont : la cuisine, les sanitaires et les réserves.

Quels sont les critères à respecter pour que le bâtiment soit considéré comme conforme aux exigences Q-ZEN 2021 en Région wallonne ?

  1. Respecter les Umax.
  2. Ne pas dépasser le niveau K maximum en tenant compte de l’impact des nœuds constructifs
  3. Ne pas dépasser le niveau EW maximum spécifique au bâtiment concerné
  4. Respecter les règles de ventilation décrites dans l’annexe C3 de l’AGW du 15/05/2014 telle que modifiée par l’AGW du 15/05/2016
  5. Installer un comptage énergétique pour chaque unité PEB

1. Respect des Umax

Les Umax à respecter dans le cas présent sont :

  • Murs : 0.24 W/m²K
  • Toitures : 0.24 W/m²K
  • Planchers : 0.24 W/m²K
  • Fenêtres : 1.50 W/m²K
  • Vitrages : 1.10 W/m²K

Le tableau ci-dessous, extrait du logiciel de calcul PEB, montre que cette exigence a été respectée partout.

Nom de la paroi U (W/m²K)
Fenêtres 0.78

Fenêtre SAS Sud-Ouest 0.69

Vitrages 0.53

Murs extérieurs 0.1

Plafonds 0.06

Planchers 0.08

Les performances des fenêtres et des vitrages ont été montrées à l’aide de pièces justificatives émises par les fabricants.

 

Les châssis en bois avec triple vitrage © JL DERU.

Les performances des murs, plafonds et planchers ont été calculées à l’aide du logiciel PEB.

Les façades

Coupe verticale dans un mur de façade (extrait plan architecte).

Calcul du U du mur de façade à l’aide du logiciel PEB.

Le plafond

Coupe verticale dans le plafond (extrait plan architecte).

Calcul du U du plafond à l’aide du logiciel PEB.

Le plancher

Coupes verticales (longitudinale et transversale) dans le plancher (extrait plan architecte).

Calcul du U du plancher à l’aide du logiciel PEB.

2. Respect du critère K ≤ 35

Lors de la demande de permis d’urbanisme en 2011, les nœuds constructifs (et les éventuels ponts thermiques) n’étaient pas pris en compte dans le calcul PEB. L’impact des nœuds constructifs sur le niveau d’isolation thermique global du bâtiment K doit être considéré si on veut vérifier la conformité du bâtiment avec les règles Q-ZEN qui entreront en vigueur en janvier 2021.

Le résultat obtenu en 2011, ne tenant pas compte des déperditions supplémentaires dues aux nœuds constructifs est donc très optimiste : K11 < K35.

Sera-ce encore le cas si les nœuds constructifs sont intégrés dans le calcul ?

La méthode PEB propose trois manières de prendre en compte les nœuds constructifs, chacune ayant une influence différente sur les résultats :

  1. Option A : méthode détaillée
  2. Option B : méthode des nœuds PEB conformes
  3. Option C : Supplément forfaitaire

L’option A qui est la plus précise nécessite un travail important. Tous les nœuds constructifs doivent être modélisés pour en connaître le Ψ linéaire ou le χ ponctuel. Ils doivent en outre être mesurés et comptés.

L’option B est plus pragmatique. Elle permet une évaluation rapide de la qualité thermique des nœuds constructifs sans pénaliser significativement les résultats du calcul de K et de EW.

L’option C est la plus facile, mais pénalise fortement les résultats.

Option C Option B Sans les nœuds constructifs
K [/] K21
(< K35)
K14
(< K35)
K11
(non valable)

Influence de l’option de calcul des nœuds constructifs sur la valeur K obtenue.

L’option C induit un supplément de 10 points à la valeur K tandis que l’option B, lorsque comme c’est le cas ici, tous les nœuds constructifs sont PEB conformes, en ajouterait 3.

Étant donnée la forte isolation du bâtiment, même l’option C permet de respecter le critère du niveau K35. Toutefois, le choix de l’option B est préférable, car les performances annoncées pour le bâtiment ont un impact sur le certificat PEB qui sera délivré en fin de travaux.

Coupe verticale toiture-façade.

Coupe verticale plancher-façade.

Coupe horizontale fenêtre-façade.

Les nœuds constructifs sont PEB conformes (extrait plan architecte).

L’option A aurait également pu être appliquée. Dans ce cas le niveau K aurait été égal ou inférieur à K14.

3. Respect du critère EW ≤ (90/45)

Les exigences à respecter dans une unité PEN varient d’une fonction à l’autre.

Ainsi l’exigence Ew pour les fonctions bureau et enseignement est égale à 45 tandis que pour toutes les autres fonctions, elle est égale à 90.

Lorsqu’il y a dans une même unité PEN plusieurs fonctions, l’exigence est adaptée en fonction du poids proportionnel des différentes fonctions.

Méthode de calcul pour l’exigence EW des unités PEN :

  • E W : l’exigence de niveau EW pour l’unité PEN ;
  • A ch, fct f : la surface totale de plancher chauffée ou climatisée de chaque fonction f, en m² ;
  • E W, fcf f : l’exigence de niveau EW pour chaque fonction f ;
  • A ch : la surface totale de plancher chauffée ou climatisée de l’unité PEN, en m².

Il faut faire la sommation sur toutes les fonctions f de l’unité PEN.

Le bâtiment ne comprend qu’une seule unité fonctionnelle « bureau ». L’exigence EW est donc EW45.

En prenant en compte des nœuds constructifs suivants l’option B, le calcul des performances du bâtiment à l’aide du logiciel PEB donne pour résultat EW25. Cette valeur est bien inférieure au critère EW à respecter.

Étant donnée la forte isolation du bâtiment, même l’option C permet de respecter le critère du niveau EW45. Toutefois, le choix de l’option B est préférable, car les performances annoncées pour le bâtiment ont un impact sur le certificat PEB qui sera délivré en fin de travaux.

Option C Option B Sans les nœuds constructifs
EW EW31
(< EW45)
EW25
(< EW45)
EW23
(non valable)

5. Respect des règles de ventilation

La ventilation du bâtiment est assurée par un système D grâce à une centrale double flux avec récupération de chaleur. Le choix de cette centrale de traitement d’air s’est fait suite au calcul du débit nécessaire dans ce bâtiment conformément à l’annexe C3 de l’AGW du 15/05/2014 tel que modifié par l’AGW du 15/05/2016. Elle répond donc aux exigences PEB Q-ZEN de 2021.

La centrale double flux, qui se situe dans un local technique intérieur, assure un débit de 435 m³/h qui sera distribué dans l’ensemble du bâtiment.

Plan du système de ventilation.

Tableau des débits de ventilation extrait de l’outil de calcul PEB.

Le rendement thermique du groupe de ventilation annoncé par le fabricant est de 95 %. Cette valeur ne correspond pas au rendement calculé selon la norme EN 308 pour le débit concerné de 435 m³/h.

Rendement de l’échangeur annoncé par le fabricant.

Pour connaître le rendement des échangeurs à introduire dans l’outil de calcul PEB, il faut consulter sur la toile  la base de données EPBD qui donne les rendements thermiques des différents appareils en fonction des débits selon la norme EN 308 :
http://www.epbd.be/media/pdf/donnees_produits_peb/product_data/4.4_ventil_FR.pdf

Dans le cas du bâtiment étudié, le rendement à encoder est de 82%.

Valeur extraite de la base de données EPBD.

6. Respect de la règle de comptage énergétique

Le bâtiment ne compte qu’une seule unité PEB. Cette règle est donc très facile à respecter puisque la présence des compteurs des sociétés distributrices (gaz et électricité) suffit.

Conclusion : Le bâtiment abritant les bureaux de la firme RADERMECKER INTERCHIMIE est Q-ZEN suivant la réglementation wallonne qui est d’application pour ce type de bâtiment à partir du 1er janvier 2021 !

Cela signifie qu’atteindre ce standard est tout à fait réalisable pour les futures constructions, puisqu’un bâtiment performant conçu en 2011 répond déjà aux exigences de 2021.

Cette étude de cas a été développée à l’aide des informations et documents fournis par le bureau d’architecture ayant conçu le bâtiment.
Bureau d’architecture CANEVAS
Notre interlocuteur fut Madame Sophie Hubert, ingénieur-architecte.
Téléphone : +32(0)4 364 11 90 – Email : architectes@canevas.be Site internet : www.canevas.be
Avant d’analyser l’impact qu’aurait une installation de panneaux photovoltaïques sur les points PEB de la crèche, elle doit d’abord être pré-dimensionnée.
Les différentes parois de la crèche ont été étudiées pour déterminer où les panneaux photovoltaïques pourraient être placés sachant que l’inclinaison idéale est de 35° et que l’exposition idéale est au sud.
La toiture inclinée n’a pas été retenue à cause de sa pente de 18° exposée Nord.
Parmi les toitures plates, deux ont été retenues :
  • la toiture A, au-dessus du local du personnel (38 m² exploitables) ;
  • la toiture B, au-dessus de l’espace de rangement et de l’EANC (39 m² exploitables).

À partir de leurs surfaces, la puissance de production de ces panneaux peut être calculée. Sachant qu’on peut produire environ 0,125 kWc par m², on peut estimer que :

  • la toiture A produira 4,75 kWc ;
  • la toiture B produira 4,88 kWc.

Pour calculer la production électrique annuelle des panneaux, la formule suivante doit être utilisée :

[kWh] = [kWc] * 950 kWh * α

Où,

  • 950 kWh permet de considérer que 1 kWc produit 950 kWh quand le panneau est exposé plein sud à 35°
  • α est un coefficient correcteur prenant en compte l’orientation et l’inclinaison des panneaux photovoltaïques.
Inclinaison [°]
Orientation 0 15 25 35 50 70 90
Est 88 % 87 % 85 % 83 % 77 % 65 % 50 %
Sud-est 88 % 93 % 95 % 95 % 81 % 81 % 64 %
Sud 88 % 96 % 99 % 100 % 87 % 87 % 68 %
Sud-Ouest 88 % 93 % 95 % 95 % 81 % 81 % 64 %
Ouest 88 % 87 % 85 % 82 % 65 % 65 % 50 %

Coefficients correcteurs d’orientation et d’inclinaison des panneaux photovoltaïques
[https://www.energieplus-lesite.be/index.php?id=16688]

  • La toiture A produirait donc théoriquement 4,75 * 950 * 0,95 = 4 286 kWh
  • La toiture B produirait donc théoriquement 4,88 * 950 * 0,95 = 4 404 kWh
  • Et le bâtiment produirait 8 690 kWh.

Cependant, selon le logiciel PEB, ces panneaux produiront en réalité 6560 kWh à cause du facteur d’ombrage.
Quatre types d’ombrages sont à considérer. Ils valent :

Toiture A Toiture B
Angle d’obstruction  0°
Angle vertical de la saillie horizontale 11° 24°
Angle de saillie à droite
Angle de saillie à gauche 15° 32°

L’ombrage joue un rôle très important sur la production d’une cellule photovoltaïque et donc sur la production d’un panneau entier.
Pour les panneaux photovoltaïques, trois hypothèses ont été prises :

  • Les panneaux sont mono/polycristallins.
  • Les panneaux ne sont pas intégrés à la paroi du bâtiment.
  • On installe un onduleur avec isolation galvanique.
Sans panneau photovoltaïque Avec panneaux photovoltaïques
K [/] 26 26
EW [/] 70 59

Influence des panneaux photovoltaïques sur les valeurs PEB de la crèche Fort Lapin [A. de France, 2018].

Si aucun ombrage n’était présent on gagnerait encore 3 points d’EW.
En 2017, le prix d’une installation de panneaux photovoltaïques tout compris variait entre 1 100 et 1 500 € par kWc. Cela signifie que cette installation coûterait entre 10 593 € et 14 445 €.
On peut donc estimer que chaque point PEB gagné grâce à ces panneaux coûtent entre 963 et 1 313,18 €.
En plus de gagner ces points PEB, on estime un gain de 1 901,38 €/an sur la facture d’électricité.

Conclusion

Les panneaux photovoltaïques sont un bon moyen pour gagner facilement des points PEB sur le paramètre EW. Il s’agit aussi d’une énergie produite à partir de sources renouvelables très facile à mettre en place pour couvrir le peu d’énergie requise comme demandé par la directive NZEB.
Dans un futur proche, le logiciel PEB devra se mettre à jour en proposant plus de paramètres à encoder car on va connaitre une diversification du type de cellules et d’accessoires tels que les diodes by-pass.

Nous avons remarqué ci-avant que si l’on isolait toutes les parois à la limite des exigences, nous répondrions toujours aux exigences K et EW. Il en va de même pour les fenêtres et leurs châssis. Qu’en est-il si on le faisait pour les deux ?

Valeur initiale Valeur finale Delta [points PEB]
K [/] 26 40 +14
EW [/] 70 81 +11

Influence de l’isolation de la crèche Fort Lapin sur les valeurs PEB [A. de France, 2018].

Si on répond bien aux différentes exigences U, on ne répond plus à celle de K. Cette dernière est donc plus sévère que l’exigence U dans le cas de la crèche.

L’exigence qui sera la plus sévère dépendra de la compacité du bâtiment et de la proportion entre parois opaques et les parois transparentes.

Une compacité plus élevée est toujours souhaitable, mais ce n’est pas toujours possible à cause des contraintes architecturales par exemple.

Comme nous l’avons vu précédemment le bâtiment tel qu’il a été construit respecte les exigences PEB 2021 (2019), c’est-à-dire le niveau Q-ZEN. Que se serait-il passé si l’isolation des parois de l’enveloppe du volume protégé avait été réalisée à la limite du respect des exigences sur le coefficient de transmission thermique U ?
Le tableau ci-dessous reprend les valeurs de U initiales (projet réalisé) et de U finales (hypothèse de calcul = Umax)
Parois λ
Isolant [W/mK]
Épaisseur initiale [cm] Épaisseur finale  [cm] U initiale [W/m²K] U finale [W/m²K]
Façade 1 brique 0,023 13 7,6 0,16 0,24
Façade 2 enduits 0,032 18 10 0,15 0,24
Panneaux châssis 0,023 13 7,6 0,16 0,24
Mur contre terre 0,023 6 6 0,33* 0,33*
Mur contre EANC 0,023 18 8,5 0,12 0,24
Dalle sur sol 0,025 22 5 0,12 0,24
Dalle sur vide technique 0,025 22 10 0,12 0,24
Toit plat terrasse 0,024 12 1,6 0,12 0,24
Toiture plate couvrant RDC arrière 0,026 24 1,7 0,08 0,24
Toiture plate section moyens 0,026 18 0,5 0,09 0,24
Toiture en pente 0,039 30 17 0,15 0,24

Variation de l’épaisseur d’isolant dans la crèche Fort Lapin [A. de France, 2018].

* cette valeur est supérieure à Umax. Elle n’a pas été modifiée. La surface de la paroi concernée est comprise dans les 2% ne devant pas respecter les Umax.

L’impact sur K et EW est repris dans le tableau ci-dessous

Valeur initiale Valeur finale Delta [points]
K [/] 26 34 +8
EW [/] 70 76 +6

Influence de l’épaisseur de la couche d’isolant sur les valeurs PEB de la crèche Fort Lapin [A. de France, 2018]

On constate que pour la crèche « Fort Lapin » le respect des Umax permet de respecter les critères K (K35) et EW (EW90).
Attention, cela ne signifie pas que ce serait le cas pour d’autres bâtiments différents par leurs fonctions, leurs installations techniques, leurs compacités, etc.

On peut également se demander quel impact a le niveau d’isolation :

Consommation en énergie primaire

Le tableau ci-dessous reprend les besoins en énergie primaire pour le chauffage et le refroidissement en fonction du U moyen pondéré des parois de l’enveloppe du volume protégé de la crèche.

Evolution de la consommation annuelle en EP selon l’isolation des parois [A. de France, 2018].

Plus UPAROI augmente, plus on est mal isolé et donc plus il faudra chauffer le bâtiment. Par contre si UPAROI augmente, il faudra également moins refroidir le bâtiment, car celui-ci se refroidira par transmission thermique puisque de manière générale, il fait plus chaud à l’intérieur du bâtiment qu’à l’extérieur. Les courbes sont évidemment théoriques puisque UPAROI = 0 W/m²K est impossible à atteindre.
Il existe un optimum d’isolation qui serait intéressant à déterminer afin d’isoler un minimum et de consommer un minimum. Cet optimum sera spécifique à ce bâtiment et à son utilisation. Il dépendra principalement du prix des combustibles. Si les prix sont bas, cela ne nous coûtera pas cher de chauffer et donc on isolera moins.

Niveau K

Le graphe ci-dessous montre l’évolution du niveau K en fonction du coefficient de transmission moyen des parois de l’enveloppe du volume protégé. Il s’agit d’une droite puisque le niveau K directement proportionnel au U moyen pondéré. Il est déterminé par 100 fois le produit de cette valeur par un coefficient dépendant de la compacité du bâtiment. Le point d’origine de la droite est évidemment théorique, puisque UPAROI = 0 W/m²K est impossible à atteindre.

Niveau EW

La courbe ci-dessous montre l’évolution du niveau EW du bâtiment lorsqu’on fait varier le niveau U moyen.

Les valeurs par défaut du coefficient de transmission thermique du simple vitrage (U = 5,80 W/m²K), du double vitrage (3,30 W/m²K) et du triple vitrage (2,30 W/m²K), sont supérieures aux exigences de la PEB (Umax = 1,10 W/m²K). Les valeur par défaut ne pourront donc être utilisées que si la surface des vitrages fait partie des 2% de la surface de la déperdition totale AT qui peuvent déroger à la règle des Umax.

U
[W/m²K]
Simple Clair (8 mm) 5,8
Double Clair 2,8
Clair + basse émissivité 1,6
Clair + absorbant 2,8
Clair + réfléchissant 2,8
Clair + basse émissivité +contrôle solaire 1,6
Clair + basse émissivité + gaz isolant 1 à 1,3
Clair + basse émissivité + contrôle solaire + gaz isolant 1 à 1,3
Triple Clair 1,9
Clair + basse émissivité + gaz isolant 0,5 à 0,8
Clair + basse émissivité + contrôle solaire + gaz isolant 0,5 à 0,8

Récapitulatif du type de vitrage standard disponible sur le marché aujourd’hui [A. de France, 2018].

Les valeurs surlignées en rouge sont des valeurs supérieures aux exigences du standard Q-ZEN.
Celles en bleu sont des valeurs dont une partie est également supérieure aux exigences. Cela réduit le choix du type de vitrage autorisé dans un bâtiment devant répondre aux exigences PEB.
Les vitrages des fenêtres de la crèche « Fort Lapin » ont un Ug = 0.5 W/m²K

Consommation en énergie primaire

Le tableau ci-dessous reprend les besoins en énergie primaire pour le chauffage et le refroidissement du bâtiment si on fait varier le U moyen des vitrages tout en conservant les mêmes facteurs solaires g.

Évolution de la consommation annuelle en EP selon l’isolation des vitrages [A. de France, 2018].

Des ressauts se produisent lorsque le Ug du vitrage devient supérieur au Uf du châssis. À ce moment la formule simplifiée utilisée dans la méthode de calcul change. La surface de vitrage par défaut passe de 70 % à 80 % de la surface de la fenêtre. Les apports solaires deviennent alors plus importants ce qui diminue les besoins en chauffage en hiver et augmente les besoins en refroidissement en été.
Si les proportions exactes de vitrage et de châssis avaient été encodées, il n’y aurait pas de ressaut.

Niveau K

Le graphe ci-dessous montre l’évolution du niveau K en fonction du coefficient de transmission moyen des vitrages. Il s’agit d’une droite puisque le niveau K directement proportionnel au U moyen pondéré qui lui-même varie linéairement en fonction du Ug du vitrage. Il n’y a pas de ressaut dans la droite puisque les apports solaires n’interviennent pas dans le calcul du K.

Évolution de K en fonction de l’isolation des vitrages [A. de France, 2018].

Niveau EW

Le graphe ci-dessous montre l’évolution du niveau K en fonction du coefficient de transmission moyen des vitrages.

Évolution d’EW en fonction de l’isolation des vitrages [A. de France, 2018].

EW étant fonction de l’EP totale consommée, elle dépend directement de l’EP consommée pour le chauffage et l’EP consommée pour le refroidissement. Ces deux-ci étant linéaires, il est logique qu’EW le soit aussi. De plus, vu qu’ils ont tous les deux un saut au même endroit, il est logique qu’EW présente une discontinuité en ce point.

Tableau de synthèse

UVITRAGE
[W/m2K]
    K [/] EW [/]
0,0* 23 68
0,1* 24 69
0,2* 24 69
0,3* 25 69
0,4* 25 70
0,5 26 70
0,6 26 70
0,7 27 71
0,8 27 71
0,9 28 72
1,0 29 72
1,1 29 73

Influence de l’isolation des vitrages sur les exigences PEB de la crèche Fort Lapin [A. de France, 2018].

* ces vitrages n’existent pas (encore ?) actuellement.

Le bâtiment répond aux exigences PEB de 2021, mais est-il confortable ?
L’ambiance a été analysée dans les 3 pièces principales de la crèche et ensuite, le ressenti des occupants a été étudié.

Prise des mesures

Pour les mesures intérieures, des sondes enregistreuses ont été placées pendant un mois dans le local principal des différentes sections (petits, moyens, grands). Les données extérieures ont été fournies  par le service de prévision météorologique METEOBLUE.

Courbe de l’évolution de la température dans les différentes sections.

De manière théorique, la température dans les différentes sections se situe dans la zone de confort (entre 19.5 °C et 25 °C) à l’exception de certains pics exceptionnels. Dans les zones de repos, on veillera cependant à maintenir la température la plus basse possible pour éviter la mort subite du nourrisson.
Dans une crèche, les puéricultrices sont très attentives à maintenir une température suffisante pour le confort et la santé des bébés et jeunes enfants. La température de consigne est, dès le départ, relativement élevée. À cause de la faible inertie du bâtiment, si en cours de journée, la température extérieure et l’ensoleillement augmentent, l’effet se traduit rapidement à l’intérieur du bâtiment par une augmentation de la température.
Durant la période de mesures, la température extérieure était toujours inférieure à la température intérieure. Une bonne gestion de la ventilation intensive de jour aurait pu maintenir la température des locaux dans la zone de confort. Cela ne serait pas possible lors de fortes chaleurs en été. Durant les fortes chaleurs, il sera sûrement nécessaire d’anticiper les risques en prenant toutes les mesures utiles pour se protéger de la chaleur.
L’humidité relative dans les locaux se trouve comprise entre 20 % et 40 %. Lorsqu’il fait plus froid dehors, elle se trouve sous la limite inférieure de la zone de conforts (30 %)
Cette analyse expérimentale correspond relativement bien avec les ressentis des occupants. Si on regarde les tableaux n° 27,28 et 29, on remarque que les employées, à l’exception de ceux de la section des moyens, trouvent l’air trop sec. Un organe de déshumidification n’aurait donc pas d’intérêt dans ce bâtiment tandis qu’un organe d’humidification pourrait être intéressant.

Ressenti des occupants

Afin de connaître la satisfaction de confort des employés de la crèche, il leur a été demandé de répondre à une grille d’évaluation de manière hebdomadaire pendant le mois des mesures.
Les employées déclarent avoir trop chaud début avril (9, 10 et 11 avril). Le reste du temps, ils apprécient la température ambiante à quelques exceptions où ils disent avoir plutôt chaud à plusieurs reprises malgré que la température intérieure soit comprise entre les deux limites du confort. Les ressentis des occupants correspondent relativement bien  à ceux prévisibles à la lecture des mesures. Certains employés indiquent que malgré l’ouverture des fenêtres certains jours, il continue à faire beaucoup trop chaud.
Lorsque l’air est trop sec,  les occupants le signalent. C’est beaucoup plus manifeste dans la section des petits où la température de l’air est plus élevée.

Conclusions

Le bâtiment est toujours en phase de rodage et certains réflexes préventifs doivent encore être acquis pour diminuer les surchauffes. Ces réflexes viendront avec l’expérience de ses utilisateurs.
En été, vu la faible inertie du bâtiment, en période de forte chaleur, il sera probablement difficile de maintenir la température sous la limite théorique de confort. La température intérieure ne descendra pas en dessous de la température extérieure. Des protections solaires et une bonne ventilation à certains moments de la journée seront indispensables pour maintenir le confort à des niveaux acceptables. Une nouvelle campagne de mesure et de concertation avec les utilisateurs durant cette période serait très instructive.
Un organe d’humidification de l’air est manifestement nécessaire en hiver lorsque l’air est très sec.

Il existe trois manières de prendre en compte les nœuds constructifs, chacune ayant une influence différente sur les valeurs PEB.

  1. Option A : méthode détaillée ;
  2. Option B : méthode des nœuds PEB conformes ;
  3. Option C : Supplément forfaitaire.

-> L’option A qui est la plus précise nécessite un travail important. Tous les nœuds constructifs doivent être modélisés pour en connaître le Ψ linéaire ou le χ ponctuel. Ils doivent en outre être mesurés et comptés.

-> L’option B est plus pragmatique. Elle permet une évaluation rapide de la qualité thermique des nœuds constructifs sans pénaliser significativement les résultats du calcul de K et de EW.

-> L’option C est la plus facile mais pénalise fortement les résultats.

Option C Option B Delta [points]
K [/] 26 19 -7
EW [/] 70 64 -6

Influence des nœuds constructifs sur les valeurs PEB de la crèche Fort Lapin [A. de France, 2018].

Les résultats obtenus correspondent avec ce qui était prévisible. En effet, de manière globale, utiliser l’option C induit un supplément de 10 points à la valeur K tandis que l’option B, lorsque comme c’est le cas ici, tous les nœuds constructifs sont PEB conformes, en ajouterait 3. Il y a donc bien une différence de plus ou moins 7 points entre les deux options. Cette différence a également un impact important sur le EW. Celui-ci varie en fonction de la compacité du bâtiment.

Utiliser l’option B lorsque la majorité des nœuds constructifs sont PEB conformes est donc une manière facile de gagner des points PEB sur les exigences K et EW.

Que se passe-t-il lorsque l’étanchéité à l’air de l’enveloppe de la crèche « Fort Lapin » est différente ? En d’autres mots, que se passe-t-il lorsque v50 varie ? (v50 représente le débit de fuite pour une différence de 50Pa entre l’intérieur et l’extérieur par unité de surface de l’enveloppe [m³/h.m²]).
Le cahier spécial des charges demandait que le v50 ne dépasse pas 0.92 m³/hm². Malheureusement, la valeur mesurée lors de la réception du bâtiment était 1.98 m³/hm². C’est donc cette dernière valeur qui a été utilisée dans la déclaration PEB finale.
Actuellement, d’après le CSTC, les bâtiments construits sans attention particulière à l’étanchéité à l’air ont un v50 variant entre 6 et 12 m³/(h.m²). Elle varie entre 2 et 6 m³/(h.m²) lorsqu’une conception judicieuse et une mise en œuvre soignée a été appliquée. Pour descendre sous ces valeurs, une véritable expertise est nécessaire tant au niveau de la conception que de l’exécution : chaque détail, chaque nœud constructif, … doit être correctement analysé et tous les corps de métier doivent être sensibilisés et impliqués dans cette recherche d’étanchéité à l’air.
Le tableau ci-dessous indique les valeurs K et EW qu’aurait atteint le bâtiment si son étanchéité à l’air avait été différente.
Valeur mesurée sur site Valeur visée dans le cahier des charges Valeur théorique minimum Valeur max lors d’une attention très particulière Valeur max lors d’une faible attention Valeur maximum (par défaut)
v50 [m³/h.m²] 1,98 0,92 0 2 6 12
K [/] 26 26 26 26 26 26
EW [/] 70 69 69 70 73 79

Représentation de l’influence de l’étanchéité à l’air sur les valeurs PEB [A. de France, 2018].

La première chose que nous remarquons dans ce tableau est que l’étanchéité à l’air n’influence pas la valeur de K. K dépend uniquement de la compacité du bâtiment et de l’isolation de chaque paroi. Il est donc indépendant de l’étanchéité à l’air.
Le graphique suivant a été dessiné en faisant varier le v50 de 0 m³/(h.m²) (valeur minimum théorique, mais inatteignable) à 12 m³/(h.m²) (valeur imposée par défaut par le programme). Ensuite, ce graphique a été divisé en trois parties :

  1. En vert : niveau d’étanchéité obtenu en faisant une véritable expertise (0 < v50 < 2)
  2. En orange : niveau d’étanchéité obtenu en faisant une conception judicieuse et une mise en œuvre soignée (2 < v50 < 6)
  3. En rouge : niveau d’étanchéité obtenu en n’appliquant pas d’attention particulière à l’étanchéité à l’air (v50> 6)

Évolution d’EW en fonction de l’étanchéité à l’air [A. de France, 2018].

On remarque que ce graphe a une forme « d’escalier ». Cela est dû au fait que le logiciel PEB arrondit toujours les valeurs à l’unité supérieure (exemple : 71,05 -> 72) afin de se placer du côté de la sécurité.
Dans le graphique suivant, des valeurs dites « PEB » qui sont les valeurs données par le logiciel et des valeurs dites « brutes » qui sont les valeurs non arrondies calculées à partir des formules trouvées dans les normes.

Évolution d’EW en fonction de l’étanchéité à l’air [A. de France, 2018].

Comme on le voit l’impact de l’étanchéité à l’air sur EW est linéaire. Il y a juste un petit ressaut qui apparaît lorsqu’on passe de v50= 8,05 à 8,06 m³/(h.m²). Cette valeur ne correspondant à aucune limite théorique, la consommation d’EP des différents postes a été analysée. On remarque une variation plus importante que précédemment pour la consommation d’EP pour le chauffage. Une demande d’EP pour le chauffage apparaît en juin alors qu’elle était toujours nulle pour des valeurs v50 ≤ 8.05 m³/m².

Si on retire cette demande en juin, le petit saut disparaît et on retrouve la droite initiale.

Dans la réglementation PEB, le calcul de la consommation de chaud prévoit que si le rapport gain-déperdition de chaud pendant un mois se trouve entre 0 et 2,5 une consommation est prise en compte. Si ce rapport est hors de ces limites, on considère la consommation de chaleur nulle.

Dans le cas de la crèche, en passant d’une étanchéité à l’air de 8,05 à 8,06 m³/(h.m²), le facteur gain-déperdition prend au mois de juin une valeur située entre 0 et 2,5 engendrant une consommation d’EP pour le chauffage.

Conclusion

L’étanchéité à l’air influence fortement la valeur d’EW (jusqu’à 10 points). De plus, comme l’évolution est linéaire, l’impact sera toujours le même, peu importe la performance existante. Descendre sous 2 m³/(h.m²), influence peu EW (maximum -1 point). Or, pour descendre sous cette valeur, une véritable expertise est nécessaire tant au niveau de la conception que de l’exécution. Un optimum économique doit être estimé.

La crèche « Fort Lapin » est équipée d’une chaudière à gaz à condensation de 40 kW.
Si pour comparer les différents types de générateurs, les valeurs par défaut pour le rendement sont appliquées, on obtient pour la crèche les valeurs reprises au tableau ci-dessous.
Type de générateur EP chaud [MJ] EW [/]
Chaudière à eau chaude à condensation 101456,89 74
Chaudière à eau chaude non à condensation 101456,89 74
Générateur d’air chaud 101456,89 74
Fourniture de chaleur externe 148524,52 83
Chauffage électrique par résistance 183761,2 89
Autre générateur 101456,89 74

Influence du type de générateur sur les valeurs PEB de la crèche Fort Lapin [A. de France, 2018].

Il n’y a aucune différence pour les valeurs d’EW pour les 4 types de générateurs suivants : la chaudière à eau chaude à condensation, la chaudière à eau chaude non à condensation, le générateur d’air chaud et l’autre générateur. Il aurait semblé évident qu’une chaudière à condensation engendre moins de point EW qu’une chaudière non à condensation par exemple.
Ces rendements sont identiques parce que les valeurs par défaut du rendement ont été utilisées pour le calcul. La PEB se place en effet du côté de la sécurité pour les valeurs par défaut. En indiquant un même rendement pour une chaudière à eau chaude à condensation qu’une chaudière à eau chaude non à condensation, la PEB prévoit que la température de retour pourrait être trop élevée pour que la condensation se produise dans la chaudière à condensation.
Voici un tableau reprenant les valeurs obtenues pour différents types de générateurs sans utiliser les valeurs par défaut, mais bien les valeurs certifiées par des fabricants :

Type de générateur Vecteur énergétique η [%] Température de retour [°C] EW [/]
Chaudière à eau chaude à condensation Gaz naturel 107,1 30 70
Chaudière à eau chaude à condensation Mazout 102 35 71
Chaudière à eau chaude non à condensation Gaz naturel 81,94 30 74
Générateur d’air chaud Gaz 92,5 / 72
Générateur d’air chaud Mazout     90,1 / 71
Fourniture de chaleur externe / 97 / 83
Chauffage électrique par résistance / 100 / 89

Exemple de type de générateurs [A. de France, 2018].

La puissance n’est pas prise en compte dans ce tableau parce que celle-ci n’influence pas le calcul PEB. Cette puissance n’est utile que lorsqu’il y a plusieurs types de générateurs. Le logiciel prendra par défaut le générateur le plus puissant comme générateur préférentiel.

Conclusion

Comme on pouvait s’y attendre, le choix du type de générateur « chauffage électrique par résistance » est fort défavorable à la valeur d’EW. Il engendre +19 points par rapport à la chaudière réellement utilisée dans la crèche. Les autres types de générateurs engendrent au maximum 4 points en plus. La chaudière à gaz à condensation a donc été judicieusement choisie.