Date :

  • Février 2012

Auteur :

  • Didier

Notes :

  • mep, Sylvie

Intérêt énergétique, environnemental et financier

Y a-t-il un intérêt énergétique, environnemental et financier à associer une cogénération avec une chaudière à condensation ?
Dans ce qui suit, on tente d’y répondre par l’exploitation du logiciel d’étude de pertinence de cogénération de la Région Wallonne CogenSim.

Simulation

En partant du principe qu’une cogénération est dimensionnée pour produire la base du profil des besoins de chaleur, le solde étant fourni par une chaudière, plus cette chaudière sera performante, plus importante sera la réduction des consommations énergétiques pour fournir ce solde.
Une manière d’y arriver est de simuler une cogénération associée à une chaudière dont le rendement saisonnier évolue de 80 à 99 %.

Exemple

Les besoins de chaleur et d’électricité d’un bâtiment tertiaire sont représentés par les profils de chaleur suivants. Un exemple de profil de besoins est donné dans CogenSim.

On constate que :

  • la puissance maximale correspondant au dimensionnement est de 1 000 kW, soit 100 % de taux de charge ;
  • le besoin de chaleur résiduelle en été est de l’ordre de 200 kW. Ce besoin résiduel est de l’ordre de grandeur d’un besoin d’ECS ;
  • le profil électrique montre que le bâtiment est occupé 7 jours sur 7 avec une réduction d’activité le weekend.

Besoin de chaleur.

Besoin d’électricité.

La monotone de chaleur permet de mieux visualiser la fréquence des puissances de chauffe nécessaires sur une année :

Monotone de chaleur.

Les hypothèses de simulation sont nombreuses. L’objectif dans cet exemple étant de ne pas vous assommer de chiffres, les principales sont reprises ci-dessous :

  • Vecteur énergétique : gaz.
  • Type de régulation :
    • l’injection d’électricité sur le réseau est autorisée ;
    • le rejet de chaleur est interdit.
  • Les certificats verts sont garantis par la RW au prix de 65 €.
  • Les prix de l’électricité avant cogénération : 150 €/MWh.
  • Les prix de l’électricité après cogénération : 157 €/MWh.
  • La vente d’électricité : 40 €/MWh.
  • Les prix du combustible avant cogénération : 60 €/MWh.
  • Les prix du combustible après cogénération : 32.8 €/MWh.
  • Le taux de charge minimum de la cogénération : on considère en général qu’une cogénération ne peut moduler sa puissance qu’entre 60 et 100 %.
  • Le taux de charge minimum et maximum : 40 et 60 %.
  • La capacité du ballon tampon : 10 000 litres.

Simulation

CogenSim a sélectionné une cogénération d’une puissance de 200 kWélectrique et 297 kWthermique. Les caractéristiques principales de la machine sont détaillées dans le tableau suivant :

Combustible
Puissance nominale électrique (hors auxiliaires électriques) 200 kW
Puissance appelée par les auxiliaires électriques 4 kW
Puissance nominale thermique 297 kW
Rendement électrique à charge nominale 35 %
Rendement électrique à mi-charge 31 %
Rendement thermique à charge nominale 52 %
Rendement moyen électrique 34 %
Rendement moyen chaleur 52 %
Rendement moyen de fonctionnement 86 %

Pour différentes valeurs de rendement (80, 85, 90 et 100 %), le bilan énergétique donne :

Bilan énergétique
Rendement de la chaudière associée 80 % 85 % 90 % 100 %

Sans cogénération

Énergie électrique consommée 4,956,554 4,956,554 4,956,554 4,956,554 kWhélectrique/an
Besoins thermiques nets 3,521,490 3,521,490 3,521,490 3,521,490 kWhth/an
Combustible consommé 4,401,862 4,142,929 3,912,766 3,521,842 kWhcombustible/an
Énergie électrique primaire consommée 12,391,385 12,391,385 12,391,385 12,391,385 kWhcombustible/an
Énergie primaire totale sans cogénération 16,793,247 16,534,314 16,304,151 15,913,227 kWhcombustible/an

Avec cogénération

Énergie primaire consommée par la cogénération 3,984,400 3,984,400 3,984,400 3,984,400 kWhcombustible/an
Chaleur utile produite par la cogénération 2,076,437 2,076,437 2,076,437 2,076,437 kWhth/an
Économie combustible correspondante pour la chaufferie 2,595,546 2,442,867 2,307,152 2,076,644 kWhcombustible/an
Chaleur utile encore à produire par la chaufferie 1,448,450 1,448,450 1,448,450 1,448,450 kWhth/an
Consommation correspondante par la chaufferie 1,810,562 1,704,059 1,609,389 1,448,595 kWhcombustible/an
Énergie électrique produite par la cogénération 1,358,704 1,358,704 1,358,704 1,358,704 kWhélectrique/an
dont énergie électrique revendue au réseau 110 110 110 110 kWhélectrique/an
dont énergie électrique auto-consommée 1,358,594 1,358,594 1,358,594 1,358,594 kWhélectrique/an
Énergie électrique consommée au niveau du réseau 3,597,960 3,597,960 3,597,960 3,597,960 kWhcombustible/an
Énergie primaire totale avec cogénération 14,789,863 14,683,360 14,588,690 14,427,896 kWhélectrique/an
Taux d’économie de CO2 12 % 11 % 11 % 9 %

Sur base des résultats obtenus et dans ce cas précis, on peut « tirer » les informations suivantes :

> Le bilan énergétique théorique est favorable à l’association d’une chaudière, quelle qu’elle soit, à une cogénération.

> Lorsqu’on tend vers le rendement d’une chaudière à condensation, les consommations en énergie primaire diminuent. En effet, le besoin thermique résiduel pris en charge par la chaudière génèrera une consommation d’autant plus faible que meilleur sera le rendement de la chaudière.

Quant au bilan économique, il est présenté dans le tableau suivant :

Bilan financier

Sans cogénération

Coûts 80 % 85 % 90 % 100 %
Montant facture électricité 743,483 743,483 743,483 743,483 €/an
Montant facture combustible 264,111 248 575 234, 65 21,310 €/an
Montant facture énergie globale 1,007,594 992,058 978,249 954,730 €/an

Avec cogénération

Coûts
Montant facture électricité 566,678 566,678 566,678 566,678 €/an
Montant facture combustible 347,443 341,068 335,401 325,776 €/an
Montant entretien pour la cogénération 22,328 22,328 22,328 22,328 €/an
Montant facture énergie globale 936,451 930,075 924,408 914,783 €/an
Gain
Rente de l’électricité injectée 4 4 4 4 €/an
Économie annuelle sans C.V. 71,144 77,519 83,186 92,811 €/an
Taux d’économie en CO2 32 % 32 % 32 % 32 %
Certificats verts 28 306 28 306 28 306 28 306 €/an
Économie annuelle avec C.V. 99,451 105,826 111,493 121,118 €/an
Investissement
Cogénérateur complet (hors installation) 197,181 197,181 197,181 197,181
Groupe cogénération & stockage de chaleur 205,772 205,772 205,772 205,772
Aide à l’investissement 1 % 1 % 1 % 1 %
Facteur de surinvestissement 50 % 50 % 50 % 50 %
Groupe cogénération NET 305,572 305,572 305,572 305,572
Chaudière 33,333 33,333 33,333 50,000
Temps de Retour Simple (TRS) 3.4 3.2 3.0 2.9 Années

L’analyse du bilan financier montre que l’augmentation du rendement de la chaudière permet d’améliorer la rentabilité financière de l’ensemble de l’installation.

Remarque
Attention qu’il existe deux taux d’économie en CO2. On les appellera librement le taux d’économie en CO2 énergétique et le taux d’économie en CO2 lié au calcul des certificats verts (production verte d’électricité) :

> Le taux d’économie en CO2 énergétique (énergie primaire) est exprimé par la formule suivante :

tCO2 énergétique    Eref + Q  –  F /  Eref  + Q %

Où,

  • Eref = émissions d’une centrale électrique de référence (kg CO2/an). Si la centrale de référence est une TGV (turbine gaz vapeur), le rendement de la CWaPE est de 55 %. Par conséquent, Eref = 456 kg CO2/MWh ;
  • Q  = émissions d’une chaudière de référence (kg CO2/an) ;
  • F = émissions de la cogénération (kg CO2/an).

> Le taux d’économie en CO2 (calcul CV) est exprimé par la formule suivante :

tCO2 énergétique    Eref + Q  –  F / Eref   %

Où,

  • Eref = émissions d’une centrale électrique de référence (kg CO2/MWh électrique.
  • Q  = émissions d’une chaudière de référence (kg CO2/ MWh électrique).
  • F = émissions de la cogénération (kg CO2/ MWh électrique).