Pompe air-eau à chaleur réversible.

Vous avez dit « pompe à chaleur » ?

Elle transfère de l’énergie d’un milieu à un autre

Source : ef4.

Une pompe à chaleur (PAC) est une machine dont le but est de valoriser la chaleur gratuite présente dans l’environnement : celle présente dans l’air extérieur, les rivières, le sol. En effet, tout corps, même « froid » contient une quantité importante d’énergie qui peut être récupérée.

Pratiquement, grâce à un fluide décrivant un cycle thermodynamique, la pompe à chaleur retire de la chaleur à une source dite « froide » et la rejette dans une source dite « chaude ». Ce transfert fait appel à un processus forcé, puisque chacun sait que la chaleur se déplace de façon naturelle d’une zone chaude vers une zone froide. C’est pourquoi, la PAC doit être entraînée par un compresseur qui lui amènera l’énergie nécessaire à son fonctionnement.

À titre d’exemple,  pompe à chaleur à placer sur la toiture d’un atelier industriel.

Il est important de préciser que l’on parle ici d’appareils réalisant un transfert, et non une création de chaleur. L’objectif visé – le coefficient de performance – se situe autour de 3 unités de chaleur fournies à la source chaude par unité injectée au compresseur. Cela signifie que pour un kWh consommé et payé, on en reçoit 3 gratuitement

Mais la PAC est un producteur de chaleur « dynamique » : contrairement à une chaudière, une PAC voit ses performances varier selon les conditions d’utilisation. Elle aura ainsi de très bonnes performances de chauffage … en été alors que ce n’est pas en cette période que le besoin de chauffage est présent ! La tâche la plus difficile pour le projeteur, consiste à prendre en considération ce comportement dynamique et à équiper l’installation de telle manière que les conditions limites de fonctionnement ne soient pas dépassées.

Un boom commercial

Il s’agit d’une technologie qui bénéficie d’un fort regain d’intérêt ces dernières années après un premier boom (et une déception…) lors de la crise pétrolière des années 70. Le marché est en pleine expansion :

Développement des ventes de pompes à chaleur en Europe 2005-2013, par catégorie.

Source : https://www.ehpa.org.

Un outil « propre » ?

La PAC permet d’utiliser l’énergie électrique à bon escient. La pompe à chaleur s’inscrit-elle alors dans la démarche « développement durable » ? Il convient de nuancer la réponse.

La pompe à chaleur en tant que telle est une machine intéressante dans la mesure où un kWh payé au niveau mécanique (pour faire tourner le compresseur), on produit 3 à 4.5 kWh d’énergie thermique (suivant la technologie utilisée et la qualité de la mise en œuvre). Néanmoins, toute la question de l’impact environnemental d’une pompe à chaleur se trouve dans la façon de produire ce kWh mécanique. La majorité des PAC utilisent de l’énergie électrique pour réaliser ce travail moteur. Les performances environnementales d’une PAC sont donc directement liées aux performances environnementales de l’électricité que l’on utilise. Prenons différents cas de figure :

  • Dans le cas, plutôt marginal à l’heure actuelle, où l’électricité serait produite par des énergies purement renouvelables, comme des éoliennes ou panneaux photovoltaïques, l’impact d’une PAC est remarquable dans la mesure où elle multiplie l’efficacité des énergies renouvelables pour la production thermique, et globalement, l’impact environnemental est nul. Dans ce cas de figure, il n’y a pas lieu de nuancer le propos : les PACs ont un impact positif.
  • Si l’on consomme l’électricité du réseau électrique belge, les performances environnementales des PAC sont alors à nuancer. À l’heure actuelle, la production électrique est largement dominée par les centrales nucléaires. Celles-ci réalisent autour de 60 % de le production électrique. Le restant de la production est essentiellement réalisé par des centrales travaillant avec les combustibles fossiles (gaz et charbon). Les centrales nucléaires sont caractérisées par des émissions d’équivalent CO2 relativement moindres que les centrales classiques (quoi que cet argument est parfois remis en cause). Du coup, si on fait un bilan global, travailler avec des PAC et l’électricité du réseau émet moins de CO2 que de brûler du gaz ou du mazout localement dans la chaudière de chaque habitation. Néanmoins, gros bémol, il reste la problématique des déchets nucléaires. Même si à court terme, la gestion ou du moins, l’entreposage des déchets nucléaires, est gérable, à long terme, cela peut engendrer de gros soucis. Si on s’intéresse à la consommation en combustible fossile, la PAC combinée à l’électricité du réseau est intéressante comparée à la combustion directe dans l’habitat uniquement si la pompe à chaleur à de bonnes performances, c’est-à-dire si l’on travaille avec du bon matériel, bien conçu par rapport au bâtiment et bien installé. En fait, les centrales utilisent 2 à 2.5 kWh de combustible fossile pour générer 1 kWh électrique. En intégrant les pertes du réseau électrique, il faut que la PAC produise plus de 3 kWh thermiques sur base de ce kWh électrique pour que le bilan environnemental soit intéressant.

Conclusion, l’intérêt environnemental de placer une pompe à chaleur est dépendant de la qualité de l’électricité qui est utilisée pour alimenter la PAC. Dans le cas du réseau électrique belge actuel, l’intérêt d’une PAC est présent sur les émissions de CO2 mais, en ce qui concerne la consommation en énergie primaire, uniquement si les performances thermiques des PAC sont optimisées.

Types de pompes à chaleur

 

 Source : ef4.

Les pompes à chaleur sont désignées en fonction des fluides caloporteurs dans lesquels baignent les échangeurs de chaleur de l’évaporateur et du condenseur. Attention, il s’agit bien du fluide caloporteur au niveau de l’évaporateur et du condenseur et qui n’est pas toujours équivalent au type de source chaude ou froide (l’air, l’eau ou le sol). En effet, on peut trouver intercalé, entre le condenseur et la source chaude, ou entre l’évaporateur et la source froide, un circuit intermédiaire. Prenons à titre d’exemple, les PAC Saumure/eau. On trouve du coté évaporateur de l’eau glycolée, eau glycolée dans un circuit qui parcourt ensuite le sol afin d’en extraire la chaleur. Du coté condenseur, on trouve un circuit d’eau qui, par exemple, alimente un circuit de chauffage par le sol pour se décharger de son énergie.

Les principaux types de PAC

Désignation

Évaporateur

Condenseur

Boucle intermédiaire : source froide/évaporateur

Boucle intermédiaire : condenseur/source chaude

PAC Eau/ Eau

Eau

Eau

Non

Oui

PAC Air/ Eau

Air

Eau

Non

Oui

PAC Saumure/ Eau

Saumure

Eau

Oui

Oui

PAC Air/ Air

Air

Air

Non

Non

PAC Sol/Sol

Sol

Sol

Non

Non

Exemple de désignation abrégée :

Type : Eau/ Eau
Température entrée évaporateur : 10 °C
Température sortie condenseur : 45 °C
Désignation abrégée : W10/W45

L’expression W10/W45 signifie que la source froide est une eau à 10 °C et la source chaude une eau à 45 °C. C’est sous cette forme que les fournisseurs désignent leurs produits. Une source de chaleur telle une nappe phréatique ou une eau de surface sera désignée par « eau », l’air atmosphérique ou des rejets gazeux par « air », un mélange eau-glycol qui circule dans le circuit fermé entre une source de chaleur et l’évaporateur par « saumure ». De ce fait, les pompes à chaleur puisant l’énergie du sol seront parfois désignées sous le terme de « saumure ».

Les systèmes les plus répandus sont les systèmes Air/Eau puis Saumure/Eau dont la source de chaleur est souterraine. Les pompes à chaleur Eau/Eau sont souvent soumises à autorisation et sont donc moins courantes en Belgique.

Principe de fonctionnement d’une pompe à chaleur

     

Source : ef4.

Le principe de fonctionnement est le même que celui de la machine frigorifique mais l’application travaille en sens inverse.

Cette fois, l’objectif consiste à extraire la chaleur gratuite d’un milieu extérieur : l’eau d’une rivière, l’air extérieur, l’eau d’une nappe souterraine, … (on parle de « source froide »). Physiquement, l’air extérieur à 0 °C contient beaucoup d’énergie puisque sur l’échelle des températures absolues, l’air se situe en réalité à 273 K !

Schéma du principe de fonctionnement d’une pompe à chaleur.

L’évaporateur est à l’extérieur et la température du fluide frigorigène sera environ 5 à 8 °C inférieure à la température de la source froide. L’énergie thermique captée sera « remontée » à un niveau de température utilisable (pour le chauffage d’une maison, par exemple) via le compresseur : le condenseur est donc à l’intérieur.

Bien sûr, on choisira un émetteur de chaleur à une température la plus basse possible (par exemple, chauffage à air chaud, chauffage à eau chaude par serpentin dans le sol, …). L’écart de température entre l’entrée et la sortie du compresseur doit être en effet le plus faible possible pour limiter le travail du compresseur.

Exemple.

Refroidir l’eau d’une rivière initialement à 10 °C pour assurer le chauffage d’une habitation par de l’air à 35 °C. Le fluide frigorigène passera à 6 °C dans la rivière et à 40 °C dans l’échangeur de chauffage de l’air du bâtiment.

Différents coefficients de performance

SC = source de chaleur (source de froide),   Acc = accumulateur.

L’évaluation de la performance instantanée

On peut déduire le rendement d’une PAC (appelé « ε », indice de performance) sur base du rapport entre l’énergie thermique utile délivrée au condenseur par rapport à l’énergie électrique fournie (et payée) au compresseur.

ε = chaleur au condenseur/travail du compresseur = Q2 / W.

Par exemple, si, à un moment de mesure donné, les températures des sources chaudes et froides d’une certaine PAC sont telles qu’elle transmet via son condenseur une puissance de 3 kW alors qu’au même moment son compresseur requiert une puissance de 1 kW, on pourra dire que son indice de performance vaut 3 kW / 1 k W = 3 pour ces conditions de température.

Ce rapport peut être obtenu ou déduit du catalogue du fournisseur, à partir de mesures qu’il aura effectuées dans des conditions standards.

L’évaluation de la performance instantanée, auxiliaires compris

Cette fois, on parle d’un coefficient de performance « COP ».

C’est la norme européenne EN 255 qui définit le coefficient de performance en lieu et place de l’indice de performance présenté ci-dessus. Pour le calculer, en plus de la puissance du compresseur, on devra prendre en compte la puissance des dispositifs auxiliaires qui assurent le bon fonctionnement de la pompe à chaleur : le dispositif antigel, la commande/régulation et les installations mécaniques (pompe, ventilateur).

Toutefois, ces mesures ne concernent que les éléments rattachés à la pompe à chaleur et sont indépendantes de l’installation de chauffage, de l’accumulateur, etc. La norme fixe des conditions de mesures standardisées très précises qui ne correspondent aux situations réelles que dans certaines circonstances particulières. Il ne faut pas perdre cela de vue lorsque l’on travaille avec le COP pour estimer les performances d’une PAC.

Reprenons l’exemple de PAC ci-dessus. Dans les conditions imposées par la norme EN 255, la puissance mise à disposition au condenseur ne sera peut-être pas 3 kW mais 3,2 kW pour une température de sortie du condenseur identique. De plus, la puissance absorbée par l’ensemble des équipements à prendre en compte ne sera peut-être pas de 1 kW mais de 1,1 kW. Le coefficient de performance vaudra alors 3,2 / 1,1 = 2,9.

L’évaluation de la performance annuelle, auxiliaires compris :

Le coefficient de performance annuel (« COPA ») est l’indice le plus important dans l’examen d’une installation de pompe à chaleur. Toutes les quantités d’énergie produites et injectées pendant une année y sont comparées les unes aux autres. Il ne s’agit plus ici d’une valeur théorique calculée à partir de puissance installées, mais d’une mesure réelle sur site de la quantité d’énergie consommée et fournie. C’est le coefficient de performance annuel qui donne vraiment idée du « rendement » et de l’efficacité de l’installation.

Imaginons que notre PAC exemple fasse maintenant partie de toute une installation de chauffage. Les variations de température des sources froides et chaudes, les pertes par émission du réseau de distribution, la consommation d’un chauffage d’appoint, etc… font que 13 000 kWh* de chaleur sont produits sur une année, tandis que les consommations globales s’élèvent à 6 200 kWh* d’énergie électrique. On dira alors que le COPA de cette installation vaut 13 000 kWh / 6 000 kWh = 2,17.

*Ces valeurs ne servent qu’à illustrer la définition du COPA. Il ne s’agit pas d’une quelconque moyenne d’installations existantes ou du résultat d’une étude de cas.

L’évaluation théorique de la performance annuelle :

Il s’agit du Facteur de Performance Saisonnier (« SPF »).

Alors que le COPA est le rapport entre les valeurs mesurées sur un an de l’énergie calorifique donnée utilement au bâtiment et de l’énergie (souvent électrique) apportée à l’installation, le SPF est le rapport de ces mêmes quantités d’énergie fournies et apportées en un an calculées de façon théorique sur base du COP instantané à différentes températures.

Il s’agit donc bien d’une valeur théorique mais prenant en compte les variations de température de la source froide et non pas d’une valeur mesurée en situation réelle comme le COPA. De plus, le SPF décrit une PAC tandis que le COPA décrit une installation complète. On ne tiendra donc pas compte pour le calcul du SPF des pertes de l’accumulateur par exemple, ou d’un mauvais réglage d’un dispositif de dégivrage, qui augmenteraient la quantité d’énergie demandée au compresseur et donnerait une valeur finale moins avantageuse mais plus réelle. On calculera le SFP comme ceci :

où,

  • Qdemandée est la quantité d’énergie demandée à la PAC durant la période de chauffe [kWh/an].
  • P(Text) est la puissance à apporter lorsque la température de la source froide est Text (par exemple les déperditions thermiques d’une maison selon la température extérieure) [kW].
  • t(Text) est le temps durant lequel la température de la source froide est Text [h/an].
  • COP(Text) est le coefficient de performance de la pompe à chaleur lorsque la température de la source froide est Text.

Un rendement qui dépasse 100 % !?

Quel bilan énergétique de la PAC ?

Qu’est-ce qui coûte dans l’exploitation d’une installation de pompe à chaleur ?

  • pas l’énergie de la « source froide » : elle est gratuite,
  • mais bien l’énergie électrique du compresseur.

D’où la notion de rendement donné par « ε », l’indice de performance :

ε = chaleur au condenseur/travail du compresseur = Q2 / W.

Or Q2 = Q1 + W = chaleur captée à la source froide + énergie développée par le travail du compresseur (loi de conservation des énergies).

Dès lors, Q2 est toujours plus grand que W et ε est toujours nettement plus élevé que 1.

Est-il normal de rencontrer une machine dont le « rendement » dépasse 100 % ?

En réalité, il ne s’agit pas ici d’une machine de conversion, de transformation d’énergie comme une chaudière (c’est-à-dire transformation d’énergie chimique en chaleur), mais bien d’une machine qui transfère une quantité d’énergie thermique d’un seuil de température à un autre. L’indice de performance n’est donc pas un rendement (de conversion) mais une évaluation de la performance du transfert.

Si l’écart entre les 2 seuils de température augmente, l’efficacité (ε ou COP) diminue.

Quel est le « ε » théorique d’une pompe à chaleur ?

Puisque W = Q2 – Q1, on écrit encore : ε = Q2 / (Q2 – Q1)

Si l’on considère un travail sans pertes, les lois de la thermodynamique établissent le lien entre l’énergie contenue dans un fluide (Q) et la température absolue de ce fluide (T), si bien que l’on admettra sans démonstration l’expression suivante du COP théorique :

ε théorique = T2 / (T2 – T1) [T étant exprimé en Kelvin]

Où :

  • T2 = température de condensation [K].
  • T1 = température d’évaporation [K].

Il faudra donc une température d’évaporation maximale et une température de condensation minimale. Attention cependant à ne pas confondre les températures T1 et T2 du fluide frigorigène avec celles des sources chaudes et froides, même si, par voie de conséquence, le coefficient de performance instantané est d’autant meilleur :

  • que la température de la source de chaleur (= la « source froide ») est élevée,
  • que la température du réseau de chauffage est basse (T2 proche de T1).

Alors que l’on ne peut guère influencer la température de la source de chaleur (la source froide), celle au départ du chauffage sera définie par le projeteur ! Par conséquent, il aura tendance à choisir un chauffage par le sol ou un chauffage à air chaud.

Exemple d’une pompe à chaleur AIR – AIR

Soit T°ext = 0 °C (= 273 °K) et T°chauff. = 40 °C

εthéor = (273 + 40) / (40) = 7,8 !

En théorie, la pompe fournira 8 x plus d’énergie au condenseur que d’énergie demandée au compresseur ! … (les 7/8 de la chaleur étant captés dans l’air extérieur).

Et quel COP pratique ?

En pratique, plusieurs éléments vont faire chuter la performance :

  • Il existe un écart de température entre le fluide frigorigène et les sources.
    Par exemple : si T°ext = 0 °C, T°évaporateur = … – 8 °C… Et si T°chauff. = 40 °C, T°condenseur = … 48 °C… D’où ε = (273 + 48) / (56) = 5,7.
    Le coefficient de convection entre l’eau et l’évaporateur étant nettement meilleur que le coefficient de convection entre l’air et l’échangeur, on aura tendance à privilégier les PAC eau/eau et eau/air. Encore faut-il avoir une rivière au fond de son jardin ou une nappe phréatique sur laquelle il est possible de puiser (autorisation obligatoire). En général, il faudra se résoudre à prendre l’air extérieur comme source froide.
  • Or dans ce cas, si la T°ext < 5 ° C, alors T°fluide évaporateur = 0 °C. Dès lors, du givre apparaît sur les ailettes, la glace bouche l’échangeur extérieur, d’où nécessité de dégivrer (soit un courant électrique est envoyé sur l’échangeur pour faire fondre la glace, soit le cycle est inversé et des gaz chauds sont envoyés dans l’évaporateur).
    Avec la consommation de dégivrage, l’indice de performance moyen diminue fortement.
  • Lorsque la température de l’air extérieur descend sous 0 °C, le compresseur a de plus en plus de mal à fonctionner : la puissance délivrée au condenseur de la pompe à chaleur devient très faible et il faut parfois ajouter des résistances de chauffage électrique directe à l’installation . Paradoxe malheureux, c’est quand il fait très froid que l’habitation demandera le plus de puissance et que la pompe à chaleur lui en donnera le moins!
  • Il y a nécessité de faire fonctionner les ventilateurs des sources froides et chaudes, d’où une consommation électrique supplémentaire de ces auxiliaires.

Exemple. Voici les spécifications techniques d’un climatiseur réversible présent sur le marché. En hiver, ce climatiseur peut fournir de la chaleur au local : il fonctionne alors en mode « pompe à chaleur ».

Unité intérieure

FHYB35FJ

Unité extérieure

RY35D7

Puissance frigorifique

kcal/h

3 100

Btu/h

12 300

kW

3,60

Puissance calorifique

kcal/h

3 500

Btu/h

14 000

kW

4,10

Puissance absorbée

rafraîchissement

kW

1,51

chauffage

kW

1,33

On y repère :

  • l’efficacité frigorifique, E.F., ou COPfroid (coefficient de performance en froid)

puissance frigorifique / puissance absorbée =
3,6 kW / 1,5 kW = 2,4
 

  • l’indice de performance au condenseur, ε

puissance calorifique (au condenseur) / puissance absorbée =
4,1 kW / 1,3 kW 
= 3,2

Attention ! Ce coefficient est obtenu dans des conditions très favorables ! En petits caractères, le fabriquant précise qu’il s’agit de valeurs obtenues pour 7 °C extérieurs… Cette performance va s’écrouler en période plus froide. En réalité, c’est le rendement moyen saisonnier qui nous intéresse… mais celui-ci n’est jamais donné puisqu’il dépend des conditions d’exploitation.

Pompe à chaleur sur boucle d’eau

Plusieurs pompes à chaleur sont connectées sur une boucle d’eau commune.

  • En été, elles fonctionnent en machine frigorifique dont le condenseur est refroidi par la boucle d’eau. Celle-ci se refroidit elle-même via par exemple une tour de refroidissement posée en toiture.
  • En hiver, elles fonctionnent en pompe à chaleur dont la boucle d’eau constitue la source « froide ». Celle-ci est elle-même réchauffée par une chaudière placée en série sur la boucle.
  • En mi-saison, ce système prend tout son sens : si simultanément des locaux sont refroidis et d’autres réchauffés, la boucle qui les relie permet le transfert d’énergie entre eux, avec une performance URE remarquable.

Ce système est optimalisé s’il dispose en plus d’un système pour stocker la chaleur et la restituer à la demande, en différé.

Ces PAC/climatiseurs sont constitués de deux parties :

  • Une partie traitement de l’air du local composée principalement d’un filtre, d’un échangeur Air/fréon et d’un ventilateur de soufflage.
  • Une partie circuit frigorifique constituée d’un compresseur, d’une vanne 4 voies d’inversion de cycle, d’un échangeur Eau/fréon raccordé à la boucle d’eau, d’un détendeur capillaire.

Suivant les cycles de fonctionnement, les échangeurs Eau/fréon et Air/fréon sont tour à tour le condenseur ou l’évaporateur du circuit frigorifique; ce basculement est rendu possible par la vanne 4 voies d’inversion de cycle canalisant les gaz chauds sous pression, en sortie du compresseur, vers l’un ou l’autre des échangeurs dans lesquels le fluide frigorigène sera alors condensé en abandonnant ses calories à l’eau ou l’air.

Impact sur l’environnement

Impact sur la couche d’ozone

Les pompes à chaleur récentes sont en général chargées avec des fluides frigorigènes  tels que les HFC, l’ammoniac, le CO2 ou le propane qui n’ont pas d’impact sur la couche d’ozone.

Impact sur l’effet de serre

Pour calculer l’impact sur l’effet de serre d’une pompe à chaleur, et donc la quantité d’équivalents CO2 qu’elle produit, on doit connaître les éléments suivants :

Éléments liés au fluide frigorigène

  1. Le potentiel de participation au réchauffement climatique sur 100 ans du fluide frigorigène choisi (le GWP100 en anglais). Voir ici  pour connaître ces valeurs en kg de CO2 par kg de fluide frigorigène.
  2. La quantité de fluide frigorigène chargée : m en kg, qui dépend du type de PAC. Il faut en effet dix fois plus de fluide frigorigène dans une PAC « sol/sol » à détente directe (à la source froide ET à la source chaude), par rapport à une PAC eau/eau ou eau glycolée/eau.
  3. La quantité annuelle de fluide frigorigène perdue à cause des fuites : L en kg/an que l’on estime à 3 % de la charge m de fluide frigorigène, si la pompe à chaleur est assemblée et testée en usine et non sur chantier. Si la PAC est assemblée sur chantier, on suppose que 10 % de la masse en fluide frigorigène est perdue par les fuites.
  4. Le taux de récupération du fluide frigorigène lors du démontage de la pompe à chaleur : αrecovery qui est estimé à 75 %.

Éléments liés à l’énergie primaire utilisée pour le fonctionnement de la pompe à chaleur et des auxiliaires

  1. La consommation électrique annuelle : E en kWh/an.
  2. Le coefficient d’émissions de CO2 dues à la production d’électricité : β = 0,456 kg de CO2/kWhélectrique si l’on considère que l’électricité est produite dans une centrale TGV.

Éléments liés à la l’utilisation de la pompe à chaleur

  1. Le nombre d’années d’utilisation : n.

Ces éléments entrent dans la formule du TEWI (Total Equivalent Warming Impact) en kg de CO2 :

TEWI = GWP100 x L x n  +  GWP100 x m x (1 – αrecovery)  +  n x E x β         (*)

Le tableau illustre les quantités de CO2 émises par différents types de PAC de 20 kW calorifiques, toutes chargées avec le fluide frigorigène R407C (GWP100 = 1 800 kg CO2/kg FF).

PAC air extérieur/eau
(A2/W35)
PAC eau/eau
(W10/W35)
PAC eau glycolée/eau
(B0/W35)
PAC sol/eau (évaporation directe)
(S-5/W35)
PAC sol/sol (évaporation et condensation directes)
(S-5/S35)
Puissance calorifique 20 kW 20 kW 20 kW 20 kW 20 kW
COP saisonnier moyen 3,5 4,5 4 4 4
Puissance électrique absorbée 20 kW / 3,5
= 5,7 kW
20 kW / 4,5
= 4,5 kW
20 kW / 4
= 5 kW
20 kW / 4
= 5 kW
20 kW / 4
= 5 kW
Consommation électrique E 5,7 kW x 2 000 h
= 1 1400 kWh/an
4,5 kW x 2 000 h
= 9 000 kWh/an
5 kW x 2 000 h
= 10 000 kWh/an
5 kW x 2 000 h
= 10 000 kWh/an
5 kW x 2 000 h
= 10 000 kWh/an
Consommation appoint 4 kW x 300 h/an
= 1 200 kWh/an
0 0 0 0
Quantité de FFm 6 kg 2,5 kg 2,5 kg 10 kg 18 kg
Quantité annuelle de FF perdue par les fuites L 3 % de 6 kg
= 0,18 kg/an
3 % de 2,5 kg
= 0,075 kg/an
3 % de 2,5 kg
= 0,075 kg/an
10 % de 10 kg
= 1 kg/an
10 % de 18 kg
= 1,8 kg/an
Premier terme de (*) 1 800 x 0,18 x 20
= 6 480 kg CO2
1 800 x 0,075 x 20
= 2 700 kg CO2
1 800 x 0,075 x 20
= 2 700 kg CO2
1 800 x 1 x 20
= 36 000 kg CO2
1 800 x 1,8 x 20
= 64 800 kg CO2
Second terme de (*) 1 800 x 6 x (1 – 0,75)
= 2 700 kg CO2
1 800 x 2,5 x (1 – 0,75)
= 1 125 kg CO2
1 800 x 2,5 x (1 – 0,75)
= 1 125 kg CO2
1 800 x 10 x (1 – 0,75)
= 4 500 kg CO2
1 800 x 18 x (1 – 0,75)
= 8 100 kg CO2
Dernier terme de (*) 20 x (11 400 + 1 200) x 0,456
= 114 912 kg CO2
20 x 9 000 x 0,456
= 82 080 kg CO2
20 x 10 000 x 0,456
= 91 200 kg CO2
20 x 10 000 x 0,456
= 91 200 kg CO2
20 x 10 000 x 0,456
= 91 200 kg CO2
Émissions 124 092 kg 85 905 kg CO2 95 025 kg CO2 131 700 kg CO2 164 100 kg CO2
Annuelles de CO2 CO2
/ 20 ans
= 6 205 kg CO2/an
/ 20 ans
= 4 295 kg CO2/an
/ 20 ans
= 4 751 kg CO2/an
/ 20 ans
= 6 585 kg CO2/an
/ 20 ans
= 8 205 kg CO2/an

On voit que le troisième terme de l’expression (*) est de loin le plus important en ce qui concerne les 3 premières PAC de 20 kW étudiées : c’est l’électricité consommée par la pompe à chaleur et ses auxiliaires qui génère le plus de CO2 (entre 80 et 95 % des émissions totales). Les quantités de fluide frigorigène sont par contre tellement élevées dans les PAC à détende directe (les deux dernières colonnes), que les émissions de CO2 leur sont en grande partie dues.
Une pompe à chaleur de 20 kW calorifiques chargée au R407C (deux fois moins polluant que le R404A) génère ainsi entre 4 000 et 8 300 kg de CO2 par an en fonction du type de PAC. En comparaison aux chaudières à mazout (13 600 kg de CO2 par an pour une puissance calorifique de 20 kW) ou au gaz (11 200 kg de CO2 pour cette même puissance), la pompe à chaleur est beaucoup moins polluante.  Les PAC qui présentent l’impact sur l’effet de serre le moins important sont les PAC sur eau de surface, car il n’y a pas lieu de forer et leur COP est élevé.

Les pompes à chaleur à électricité d’origine renouvelable

Les émissions de CO2 générées par l’utilisation d’une pompe à chaleur sont très faibles si l’électricité nécessaire à son fonctionnement est produite par des panneaux photovoltaïques ou par une autre énergie renouvelable. L’impact sur l’effet de serre n’est plus alors causé que par les fuites de fluide frigorigène et par sa récupération en fin de vie de la PAC. Alors, si possible, il faut éviter les grandes quantités de fluide frigorigène, qui annuleraient tout l’effort d’économies de CO2 permis par la production renouvelable d’électricité…

Impact sonore

La pompe à chaleur est une technologie qui émet un fond bruyant. En effet, les pièces mécaniques en mouvement, la circulation d’air, etc., occasionnent un niveau sonore qui sera d’autant plus élevé que les conditions extérieures sont mauvaises (la PAC fonctionne au maximum de ses performances par temps froid). Les compresseurs et ventilateurs sont en l’occurrence, les éléments fautifs…
Une PAC émet entre 50 et 60 décibels à 1 mètre et environ 40 dB à 5 mètres. Une telle installation ne sera tolérable que si elle n’occasionne pas de gêne sonore pour les occupants de l’immeuble et pour le voisinage. Il faut donc l’installer suffisamment loin des fenêtres, des pièces de travail, de repos, etc. La PAC devra être posée sur un silent block (plots antivibratiles).

Autres impacts

L’installation d’une PAC eau/eau sur nappe phréatique montrera un impact non négligeable sur les eaux souterraines. Il existe des réglementations pour ce type de PAC, dont la sévérité dépend de la potabilité de l’eau extraite et du débit nécessaire.
Voir le site de la base de données juridique de la Région Wallonne pour connaître la réglementation concernant les prélèvements et les rejets d’eau souterraine : ouverture d'une nouvelle fenêtre !  wallex.wallonie.be : « Arrêté du Gouvernement wallon modifiant l’arrêté du Gouvernement wallon du 4 juillet 2002 arrêtant la liste des projets soumis à étude d’incidences et des installations et activités classées » du 22 janvier 2004.
L’injection d’eau refroidie dans les eaux de surface peut avoir un impact sur le milieu.