Définition

Dans la famille des concepts de performance énergétique des bâtiments, je demande le bâtiment net zéro-énergie !

Mais qu’est-ce qu’un bâtiment « net » zéro-énergie ?

Les NetZEB pour « Net Zero Energy Building » (bâtiments nets zéro-énergie, ou « à bilan énergétiques neutres ») ne sont en rien des bâtiments autonomes ou zéro émissions. Ils peuvent être définis comme produisant autant d’énergie qu’ils n’en consomment sur une période de temps. Le bâtiment peut consommer ou non sa production et consommer de l’énergie issue du réseau ou de sa propre production (autoconsommation). Le bilan s’établi sur une année, généralement en énergie primaire et la production énergétique doit être renouvelable, cela va de soi !

Ainsi, un tel bâtiment compense sa consommation du mix énergétique sur le réseau en déversant sa surproduction renouvelable sur le réseau lorsqu’il ne peut l’autoconsommer. Généralement, le bâtiment sera consommateur en hiver et producteur en été. L’indication « Net » devant « zéro-énergie » vise à souligner cet équilibre entre consommation et production, calculé en énergie primaire. [Schéma central, ci-dessous]

Pour les bâtiments qui produisent plus d’énergie qu’ils n’en consomment, on parlera de bâtiments à énergie positive [schéma de droite, ci-dessous] tandis que ceux dont la production est proche de leur consommation mais inférieure on utilisera le terme « Quasi zéro énergie ». [Schéma de gauche, ci-dessous]

Schémas sur les 3 définitions bâtiments basse énergie.

* Si en 2018 aucune exigence wallonne ne porte sur le net zéro-énergie ou l’énergie positive, la directive Européenne 2010/31/UE impose néanmoins aux États-membres que toutes les nouvelles constructions soient quasi zéro-énergie dès le 1er Janvier 2021. Chaque État-membre est néanmoins libre de définir jusqu’à quelle écart entre production et consommation d’énergie primaire il considère qu’un bâtiment est « quasi » zéro-énergie. Pour la Wallonie, toutes les valeurs réglementaires en fonction du type de bâtiment se trouvent sur notre page dédiée.

On comprend donc bien que ce qui est mesuré au niveau de la balance énergétique ne concerne que les échanges entre le réseau et le bâtiment, ce qui se passe à l’intérieur du bâtiment n’est pas repris dans le bilan. L’éventuelle part d’autoconsommation n’est ainsi pas directement comptabilisée ou valorisée dans cet équilibre. L’égalité se fait par comparaison entre consommation sur le réseau et surproduction remise sur le réseau.

Schéma sur l'équilibre entre consommation sur le réseau en hiver et surproduction injectée sur le réseau en été.

Équilibre entre la consommation sur le réseau en hiver et la surproduction injectée sur le réseau en été.

Ces bâtiments sont toujours dépendants du réseau car ils y puisent une partie de leur consommation. Il ne faudra donc pas les confondre avec les bâtiments strictement zéro-énergie ou les bâtiments autonomes qui eux parviennent à annuler leurs besoins en énergie ou à les combler instantanément et en totalité par des énergies renouvelables produites sur place ou au sein d’un district énergétique local sans connexion au réseau.

Histoire du concept

Les premières mentions de bâtiments zéro-énergie sont la MIT Solar House I en 1933 (BUTTI,K.et PERLIN,J.(1980). A Golden Thread, 2500 Years of Solar Architecture and Technology. Van Nostrand Reinhold Company) et la Bliss House en 1955 (BLISS, R. (1955). Design and performance of the nations’ only fully solarheated house. Air conditioning, Heating and Ventilating, 52:92–97). D’autres exemples historiques sont la Vagn Korsgaard Zero energy Home au Danemark (ESBENSEN,T.et KORSGAARD,V.(1977). Dimensioning of the Solar Heating System in the Zero Energy House in Denmark. Solar Energy, 19:195– 199) et la Saskatchewan Conservation House (BESANT, R., DUMONT, R. et SCHOENAU, G. (1979). The Saskatchewan conservation house: some preliminary performance results. Energy and Buildings, 2:163–174). Les premières se concentraient sur la maximisation de la production et valorisation de l’énergie solaire, les secondes y ajoutaient des mesures de réduction de la demande de chaleur.

Ces deux axes de développement vont se croiser à la fin du XXème siècle, et résulter en une modification importante de la conception et du bilan énergétique des bâtiments. Par exemple, le double puis triple vitrage devient la norme permettant d’augmenter la surface vitrée des logements et bureaux sans augmenter les besoins de chaleur, mais en élevant les besoins de refroidissement. Ceci entraîne des réflexions plus poussées sur les protections solaires, le développement de doubles façades, etc. C’est à ce moment que se produit un glissement dans la manière de concevoir. Alors qu’avant une installation de conditionnement d’air était pensées isolément pour compenser les charges thermiques du bâtiment, quelle qu’elles soient, les concepteurs l’ont progressivement intégrée au concept global du bâtiment pour en faire un ensemble de plus en plus cohérent et complémentaire regroupant: l’enveloppe, les HVACs, les techniques passives, l’éclairage et les appareils électriques.

L’intégration croissante des systèmes et l’apparition au début des années 90’ de l’idée que techniquement le soleil pourrait suffire à répondre aux besoins d’énergie du bâtiment, contribue à renforcer la réflexion sur le zéro-énergie. Le soleil, bien utilisé et combiné à des techniques passives de régulation de l’ambiance pourrait permettre de tendre vers le zéro-énergie. Or, à ce moment, les panneaux solaires photovoltaïques et thermiques se développent, gagnent en efficacité mais surtout deviennent de plus en plus abordables.

La conjoncture d’alors entre :

  • le développement de technologies de production d’énergie renouvelable abordables,
  • l’urgence environnementale,
  • la nécessité de réduire le pic énergétique de la demande,
  • la mise en place de politiques économiques de soutien au développement des énergies renouvelables
  • la maturité des systèmes HVAC
  • l’émergence d’une vision complète et intégré des systèmes.

fut propice au développement de la perspective du Net Zéro-Énergie.

Assez vite est apparue une réflexion sur le caractère autonome (par rapport au réseau) ou non des bâtiments « zéro-énergie ». Vale et al. ont montré que l’idée d’une liaison au réseau permet une meilleure performance sur le cycle de vie du bâtiment que la recherche d’autonomie par le stockage in situ de l’énergie produite, et offre également plus de flexibilité (VALE, B. et VALE, R. (2002). The New Autonomous House : Design and Planning for Sustainability. Thames & Hudson Ltd). L’idée que le bâtiment « zéro-énergie » fasse partie intégrante d’un réseau énergétique s’est dès lors généralisée.

L’idée d’un habitat entièrement autonome est aujourd’hui limitée aux cas où les réseaux d’énergie font défaut. Pour éviter toute confusion le terme bâtiment net zéro-énergie (Net-ZEB) est utilisé de préférence à bâtiment « zéro-énergie » pour désigner un bâtiment dont la balance consommation/production est nulle sur une période déterminée (généralement un an). Il s’agit d’avoir pu produire et réinjecter sur un réseau autant d’énergie que l’on en aura consommé. Cette approche a le mérite de replacer le bâtiment dans un contexte régional (via le réseau d’électricité) ou local (via des réseaux de chaleur urbains). Notons que certains projets se présentent déjà comme plus ambitieux et prétendent à un statut de bâtiment à énergie positive.

Peut-on être NetZEB et gros consommateur d’énergie fossile?

Oui, en théorie, sans aucun doute. D’après la définition littérale d’un bâtiment NetZEB, il « suffit » simplement d’être aussi grand producteur que consommateur pour être NetZEB. Ainsi, un bâtiment mauvais du point de vue de sa performance thermique, pourrait compenser, par exemple, avec une grande surface de panneaux photovoltaïques. Celui-ci pourra alors être considéré comme « Net Zéro-Énergie ».

Définition littérale d’un bâtiment NetZEB.

Si mathématiquement la balance est vérifiée, d’un point de vue qualitatif peut on affirmer que l’énergie consommée en hiver à partir du mix énergétique (majoritairement fossile) équivaut à la même quantité d’énergie produite en été de manière renouvelable ?

En effet, l’énergie consommée en hiver est issue du mix énergétique wallon (et donc majoritairement non-renouvelable à ce jour) et utilisée à un moment où l’énergie est plus rare tandis que celle produite en été par les panneaux PV est injectée sur le réseau à un moment où la consommation est moindre et l’énergie se fait beaucoup moins rare…

Schéma sur le concept Net zéro-énergie, précisions (1).

Si les cas 1 et 2 sont tous deux Net zéro-énergie (la balance entre la surproduction injectée sur le réseau en été et la consommation sur le réseau en hiver étant à l’équilibre), on remarque que même avec ce « label », un bâtiment peut rester un grand consommateur d’énergie issue du mix énergétique du réseau (cas 2). Les deux balances sont mathématiquement à équilibre mais il reste qu’au bout de l’année une plus grande quantité d’énergies fossiles auront été consommées pour ce bâtiment (cas 2)… La meilleure énergie est et sera toujours celle qu’on ne consomme pas.

Schéma sur le concept Net zéro-énergie, précisions (2).

Pour avoir un sens environnemental et énergétique, les concepteurs de bâtiments Net zéro énergie ne peuvent se limiter au seul critère de l’équilibre production/consommation mais devraient aussi, dès le début de la conception, veiller à réduire les besoins au minimum rationnel et pertinent avant d’entreprendre les démarches de compensation des besoins résiduels via la production d’énergie renouvelable in situ. En ce sens, les exigences thermiques régionales sur la performance des parois (Umax) et le niveau d’isolation thermique global (niveau K) constituent des garde-fous.

Pour aller plus loin, n’hésitez pas à visiter nos pages sur les stratégies de conception !

Pour augmenter la part d’autoconsommation et réduire l’empreinte environnementale du bâtiment, le concepteur de l’installation peut également penser à déployer des moyens locaux de stockage d’énergie journalier et/ou saisonnier de manière à ne plus considérer le réseau comme un moyen de stockage infini.

Une approche intégrée

Ce nouveau statut du bâtiment alternativement ou simultanément producteur, consommateur, auto-consommateur induit des bouleversements sur la manière dont ceux-ci sont intégrés au réseau électrique et dans la manière de concevoir les bâtiments. En voici une synthèse traduite du livre « Modeling, Design and optimization of Net-Zero Energy Buildings » :

Systèmes, Conception et Utilisation Bâtiment “classique” Bâtiment NetZEB
Enveloppe Passive, pas conçue comme faisant partie du système énergétique global Optimisé pour la conception passive et l’intégration des systèmes solaires actifs
HVAC Systèmes surdimensionnés (côté sécurité) Petits systèmes contrôlés et optimisés, intégrés avec les systèmes solaires, les systèmes combinant chaleur et électricité, stockage journalier et/ou saisonnier, systèmes partagés dans le quartier.
Systèmes solaires (PV, ST), renouvelable, cogénération Pas d’intégration systématique, on y pense après, on rajoute après. Pleinement intégré : lumière naturelle / solaire thermique / Photovoltaïque / solaire hybride / géothermique / biomasse / connexion à un microSmartGrid
Système d’automatisation Systèmes utilisés de manière peu efficace. Contrôle prédictif, Optimisation du confort et des performances énergétiques.
Conception et utilisation Considéré séparément Intégré et optimisé pour satisfaire le confort.

Notons qu’une clarification est à faire entre les notions zéro-énergie et zéro-carbone. Le « Common Language for sustainable construction » propose les définitions reproduites ci-dessous (ref. : Europeann Concrete Platform Et Architects Council of Europe).

On constate une différence d’approche entre des objectifs exprimés en termes de carbone ou d’énergie primaire, selon que l’on se concentre sur l’impact climatique ou sur une approche plus large de l’enjeu énergétique. L’expression d’objectifs selon l’un ou l’autre terme est importante dans la mesure où les solutions techniques privilégiées sont différentes. Des solutions de chauffage à la biomasse ou à l’électricité nucléaire seront par exemple favorisées dans un bilan carbone, mais plus nuancées dans une approche énergétique.

« Net zero carbon buildings : Buildings that, by virtue of the materials of which they are constructed and by virtue of the fact that they produce surplus energy from renewable sources, ensure that, over their Design Life, they compensate for all carbon emissions associated with the construction and use of the building. »

« Net zero Energy : The goal of Net Zero Energy is to become a community that produces its own energy. Net Zero Energy Buildings […], for instance, rely on efficiency to reduce energy needs and allow the balance to be supplied with renewables. NetZEBs produce as much energy on-site as they use annually. The reason NetZEBs are referred to as ’net zero’ is that they are still connected to the grid. Sometimes they produce more power than they are consuming and feeding power to the grid and running the meter back. Sometimes they consume more power than they are producing and pulling power from the grid. But for a NetZEB, the energy given to the grid is equal to the amount of energy pulled from the grid on an annual basis. It is important to note that net zero refers to energy use, and does not necessarily mean zero carbon emissions from energy use. »

Un concept qui reste vague

Les définitions usuelles du NetZEB restent très vagues et reflètent le manque de consensus international sur la notion de bâtiment net zéro-énergie. La Tâche 40 « Vers des bâtiments nets zéro-énergie » de l’Agence Internationale de l’Energie (AIE) a dès lors compilé les différentes définitions existantes et leurs critiques (AGENCE INTERNATIONALE DE L’ENERGIE (2010). Task 40). Il ressort de cette tâche quatre éléments vis à vis desquels toute définition des NetZEB devrait se positionner.

Premièrement, le niveau de spécification des paramètres de calcul doit être clarifié. L’évaluation doit-elle préciser quelles conditions climatiques intérieures réaliser? Les charges internes doivent-elles être forfaitaires ? Pour quel climat doit se faire l’évaluation ?

Deuxièmement, le type d’indicateur et les règles de pondération entre formes d’énergie doivent être explicités. Si l’énergie primaire est l’indicateur généralement préféré, elle soulève des questions telles que l’évolution dans le temps des coefficients de conversion et la façon de prendre en compte les énergies renouvelables. Les émissions de CO2 sont une alternative possible, tout comme un bilan financier ou exergétique. Ces deux dernières possibilités sont cependant respectivement instables dans le temps et peu compréhensibles par le public.

Troisièmement, le caractère « net » de la définition doit être précisé : quels éléments sont pris en compte et sur quelle période de temps ? L’échelle de temps privilégiée est souvent l’année, ou un multiple d’années. Des divisions temporelles plus fines sont peu populaires car plus contraignantes, mais une tendance existe pour réaliser des évaluations sur le cycle de vie complet du bâtiment. La question du type d’énergie considéré est également importante. A côté de l’énergie nécessaire au maintien du climat intérieur, il n’y a pas de consensus sur la prise en compte des énergies liées à l’occupant ou aux matériaux. Ces deux aspects souffrent d’un manque de précision des méthodes d’évaluation et d’une divergence de point de vue selon l’utilité que l’on donne à la définition des NetZEB. D’un point de vue gestion des réseaux énergétiques, l’énergie grise n’a pas d’impact, mais l’occupation bien. Du point de vue du constructeur, l’inverse est plus vrai. L’importance relative de ces deux aspects est croissante au vu de la diminution des consommations d’énergie liées au maintien des ambiances intérieures. Il existe également un débat relatif aux énergies renouvelables, entre la limitation aux énergies produites sur site et l’intégration de crédits carbones.

Quatrièmement, les conséquences en termes de réseau énergétique sont à considérer. Les approches NetZEB considèrent souvent le réseau comme une forme de stockage infini, ce qui n’est pas la réalité. Des évaluations plus fines sont nécessaires, notamment au niveau de l’utilisation effective de l’énergie délivrée au réseau et des écarts entre les puissances maximales demandées et délivrées, ce qui devrait générer des indicateurs spécifiques à intégrer dans la démarche NetZEB. Ceci doit se faire à la lumière des évolutions que connaîtront les réseaux énergétiques à l’avenir, avec la part croissante d’énergie renouvelable qu’ils devront intégrer.

Cinquièmement, les procédures de monitoring et d’accompagnement doivent être précisées et devraient faire partie intégrante de la définition des NetZEB, pour garantir que les performances visées en conception sont bien rencontrées en pratique.

Un concept pragmatique ?

Aux critiques et limitations présentées ci-dessus, nous pensons utile d’ajouter que la définition des bâtiments zéro-énergie doit avant tout être un outil pratique destiné à guider le concepteur dans ses choix. Il en découle que cette notion doit répondre à trois caractéristiques : (1) la rigueur scientifique indispensable, (2) l’expression d’un niveau d’ambition proportionnel à l’enjeu et (3) le pragmatisme, compris comme sa cohérence avec la pratique de terrain. Le concept NetZEB n’offre pas forcément une réponse optimale à cette triple exigence. Et ce pour deux raisons.

Premièrement, les critiques relevées plus haut ont mis en évidence qu’une limitation aux besoins de chauffage et de refroidissement n’était pas adéquate. Il y a aujourd’hui consensus pour considérer que la notion des NetZEB devrait intégrer les consommations d’énergie liées au maintien des ambiances thermiques, à l’éclairage et aux auxiliaires HVAC, comme le fait la réglementation Q-ZEN. L’intégration de l’énergie grise liée aux matériaux et composants mis en œuvre est souvent mentionnée comme un élément à intégrer. Pour mieux refléter la réalité, l’évaluation devrait également intégrer d’autres consommations telles que l’énergie consommée par le chantier et le processus de conception en tant que tel, ou encore l’impact du projet sur l’énergie dépensée en transports et infrastructures ou son influence éventuelle sur les comportements énergétiques des habitants.

Sans trancher sur la liste des paramètres à intégrer, force est de constater que nous sommes face à une tendance qui pousse à agréger en une seule évaluation une série d’impacts énergétiques différents. D’une part, l’agrégation des différentes consommations rend la valeur finale difficilement compréhensible. Il devient difficile de se représenter concrètement ce qu’elle représente et quel est le poids de chaque mesure de performance énergétique dans le résultat final. D’autre part,il est difficile d’obtenir une valeur réaliste avant d’atteindre un stade d’avancement poussé du projet, vu que des choix préliminaires doivent avoir été faits pour chaque élément intervenant dans le calcul. Or, ce sont souvent les premières étapes qui déterminent la performance énergétique, ainsi que la combinaison de la performance énergétique avec la performance économique. La tendance à l’exhaustivité du calcul énergétique pourrait donc à terme rendre l’évaluation netzéro-énergie inopérante comme guide de conception.

Deuxièmement, la recherche d’un niveau « zéro-énergie » reflète une approche sectorielle de l’impact énergétique des bâtiments. Cette ambition peut être acceptée en tant que projection à l’échelle du secteur d’un équilibre énergétique global de nos sociétés, mais rien n’indique que l’équilibre annuel entre production et consommation soit pertinent à l’échelle d’un projet d’architecture. Au contraire, le niveau net zéro-énergie génère une iniquité flagrante au niveau des projets individuels, notamment entre les sites bénéficiant d’un fort potentiel d’énergies renouvelables et les autres, ou entre les projets permettant une réduction drastique des besoins et ceux qui ne le peuvent du fait de contraintes propres et justifiées (pensons aux questions de patrimoine remarquable, de capacité d’investissement, etc.). Un niveau d’ambition unique ne peut pas être considéré a priori comme applicable partout. Certaines situations de projet nécessiteront de revoir les ambitions à la baisse face aux contraintes techniques, économiques ou patrimoniales, tandis que d’autres permettrons d’aller plus loin que l’équilibre énergétique.

Tous Nets zéro-énergie ?

Bien qu’incontournable aujourd’hui, la notion de bâtiment net zéro-énergie apparait assez éloignée de l’architecture, tant dans ses fondements que dans son ambition. Les critiques qui lui sont faites par la communauté scientifique portent principalement sur la rigueur physique de sa définition, tandis que nous lui voyons un manque de pragmatisme de par sa volonté (louable en soi) d’exhaustivité.

Face à ses limites, il pourrait être intéressant de rouvrir la question du caractère autonome du bâtiment. D’une part il force à contextualiser l’approche, d’autre part il implique des formes de conservation de l’énergie dans le bâtiment et donc la nécessité d’analyses de comportements dynamiques sur base saisonnière et journalière. L’objectif d’autonomie totale pose également différemment la question des formes d’énergie valorisables et nécessite de repenser la notion de confort thermique.

Cette piste n’est à ce jour pas un objectif rationnel à l’échelle collective, notamment d’un point de vue économique. Dès lors, visons le NetZEB, mais de façon critique.

logo plan air, climat, énergie.

En Wallonie, un cap important a été franchi le 19 juillet 2018 avec l’approbation du Plan Wallon Énergie Climat (lié au PNEC 2030 : Plan National Énergie Climat). Ce plan prévoit de définir ce que sera le zéro énergie wallon. Cette définition devrait être d’application à partir de 2025. Dans la suite logique du QZEN (Quasi Zéro ENergies), ces bâtiments porteront l’acronyme ZEN (Zéro ENergies).