Date : 08/2010

Auteur : Olivier

Notes : mise en page Sylvie

28-02-2013 : actualisation Didier D. & Olivier.

   

Un matériau semi-conducteur 

Un matériau semi-conducteur est un matériau dont la conductibilité électrique peut varier en fonction des conditions dans lesquelles il se trouve.
C’est la mécanique quantique et la théorie des bandes qui permettent d’expliquer ce comportement. Schématiquement, le phénomène peut être représenté de la manière suivante :
Le niveau d’énergie d’un électron d’un atome ne peut prendre qu’un certain nombre de valeurs discrètes. Ces plages sont appelées « bandes d’énergie ». Suivant leur niveau d’énergie, les électrons peuvent soit se trouver dans une bande de valence ou dans une bande de conduction. Dans le premier cas, ils contribueront aux liaisons de l’atome, dans l’autre, à la conductibilité du matériau. Entre ces bandes, il existe des bandes dites « interdites », correspondant aux valeurs énergétiques que l’électron ne peut prendre.
Pour les matériaux conducteurs, cette bande interdite n’existe pas.  Les électrons de liaisons contribuent alors directement à la conductibilité. Pour les matériaux isolants, cette bande est quasi infranchissable tant l’énergie nécessaire est importante. Pour les semi-conducteurs, cette bande interdite est suffisamment petite pour permettre un passage aisé des électrons de la bande de valence à la bande de conduction.
Cette représentation permet d’expliquer la différence de comportement à la chaleur des conducteurs et des semi-conducteurs. Dans un métal, les électrons de valence soumis à la chaleur s’agitent, diminuant la zone conductrice de la bande d’énergie. Pour les semi-conducteurs, une augmentation de la température favorise le passage des électrons situés sur la bande de valence vers la bande de conduction, améliorant la conductibilité de l’atome (diminution de la résistance).

Remarque : le niveau de fermi représente le plus haut niveau d’énergie que les électrons peuvent prendre à une température de 0K.
Il est possible d’augmenter la conductibilité d’un semi-conducteur par un procédé chimique, appelé dopage, qui consiste à insérer des impuretés dans le semi-conducteur.
On réalise ainsi des semi-conducteurs de type n et des semi-conducteurs de type p.
Pour obtenir un matériau de type n, on dope le matériau semi-conducteur (généralement du silicium) avec un élément de valence supérieure (possédant plus d’électrons que le semi-conducteur), comme le phosphore, afin d’ajouter des électrons à la bande de conduction. La conduction est alors assurée par le déplacement de ces électrons.

Pour obtenir un matériau de type p, on dope le matériau semi-conducteur par un élément de valence moins importante, comme le Bore, afin de diminuer le nombre d’électrons de la bande de valence.  La conduction est  alors assurée par le déplacement de porteurs chargés positivement (trous correspondant au manque d’électrons).

Une jonction PN

Une diode électroluminescente ou une cellule solaire photovoltaïque est composée d’une jonction p-n, la couche supérieure étant un matériau de type n et la couche inférieure de type p. Pour fabriquer ces jonctions, on effectue un traitement de surface pour déposer un semi-conducteur de type n sur la surface externe d’un matériau de type p. 

La mise en contact de ces matériaux génère une barrière de potentiel à la base du champ électrique permanent. Cette barrière, appelée zone de déplétion, est formée par recombinaison du surplus de trous et d’électrons des zones p et n remise en contact. Le schéma suivant représente les niveaux d’énergie au voisinage de la jonction :

Si la température d’une telle jonction augmente, les électrons rempliront progressivement tous les états d’énergie, annulant la bande interdite et par là, l’effet de la jonction p-n.

Effet photoélectrique

Historique et principe

L’effet photoélectrique a été découvert par Alexandre Edmond Becquerel en 1839. Il est obtenu par absorption des photons dans un matériau semi-conducteur, lequel génère alors une tension électrique. Les cellules photovoltaïques produisent du courant continu à partir du rayonnement solaire qui peut être utilisé pour alimenter un appareil ou recharger une batterie. (Source : ouverture d'une nouvelle fenêtre ! EF4, facilitateur photovoltaïque).
Le rayonnement solaire est constitué de photons dont l’énergie est décrite par la relation suivante :

E [J] = hv = h . c/λ

Avec,

  • h : constante de Planck.
  • λ : longueur d’onde [m].
  • v : fréquence [Hz].

Quand un photon heurte la cellule, il transmet son énergie aux électrons des semi-conducteurs. Si l’énergie absorbée est suffisante pour permettre le passage de la bande interdite (hv > Egap = Éconduction – Evalence), ces électrons quittent leur bande de valence et entrent dans la bande dite de conduction. Cette émission d’électrons et des trous correspondants (on parle de paires électron-trou) due à l’action de la lumière est appelée effet photoélectrique interne (car les électrons ne sont pas éjectés en dehors de l’atome). Les propriétés physiques du matériau sont alors modifiées et celui-ci devient conducteur (photoconductivité). Si à l’inverse l’énergie du photon n’est pas suffisante, il traverse le matériau sans transmettre d’énergie.

Ainsi, un matériau semi-conducteur dont la bande interdite est comprise entre 0.7 et 0.4 eV est un matériau dit photovoltaïque du spectre solaire.
Le défi est de récupérer la paire électron-trou ainsi générée, car si celle-ci n’est pas récupérée suffisamment rapidement il y a recombinaison entre l’électron et le trou. Pour pouvoir valoriser le potentiel électrique de cet effet, on utilisera la différence de potentiel induite par une jonction pn.

Influence de l’éclairement

L’effet du rayonnement lorsqu’il fournit assez d’énergie (si celle-ci est supérieure à la largeur de la bande interdite) fait apparaître des paires supplémentaires d’électron trou porteur (apparition simultanée d’un porteur n et d’un porteur p) dans la jonction.
Les porteurs p ainsi créés ont tendance à migrer vers le matériau p et les porteurs n vers le matériau n, renforçant la barrière de potentiel. Une partie des porteurs générés par le rayonnement sera elle aussi soumise à divers phénomènes de recombinaison (disparition simultanée d’un porteur n et d’un porteur p).

L’éclairement a deux effets sur le fonctionnement :
Si le système fonctionne en mode récepteur (quadrant III) : la résistance diminue avec l’éclairement, c’est la photorésistance.
Si le système fonctionne en mode générateur (quadrant IV) : le courant « court-circuit » est proportionnel à l’éclairement et la tension à vide est celle de la diode en polarisation directe. C’est la cellule photovoltaïque à jonction PN. C’est sur ce quadrant IV que sont basées les caractéristiques des cellules :
Représentation théorique et équation d’une « cellule idéale ».

Avec,

  • Icc [A] : courant de court-circuit dû à l’éclairement E
  • Vco : tension en circuit ouvert.

Pour créer un courant, on place des électrodes sur chacun des matériaux et on les relie par un circuit électrique. Ces raccordements et leur fabrication provoqueront des effets résistifs parasites qui différencieront les caractéristiques réelles des cellules de ce comportement théorique.

Théories

Pour en savoir plus sur les caractéristiques des cellules.

 Effet électroluminescent

Historique

H.J. Round fut le premier à observer une émission de lumière par un semi-conducteur en 1907. La diode électroluminescente était née. C’est, en quelques sortes, l’inverse de l’effet photoélectrique qui caractérise les cellules photovoltaïques. Utilisée dans les LEDs, cette technologie n’a pas cessé de s’améliorer tant au niveau de l’étendue de la gamme de couleurs qu’à l’explosion des domaines d’application comme la signalisation et l’éclairage de puissance.

Principe

Lorsqu’on soumet une jonction PN à une source électrique à courant continu, la jonction présente un comportement différent si elle est soumise à une différence de potentiel dans le sens direct ou dans le sens inverse.
La polarisation directe de la jonction (en respectant les bornes) provoque un abaissement de la barrière de potentiel et permet un passage important d’un courant appelé courant de diffusion et dû aux porteurs majoritaires. La présence de ce courant de diffusion déséquilibre le système et aboutit à une croissance de la population des porteurs minoritaires dans chaque zone. Si la tension de polarisation directe est suffisante, la probabilité de recombinaison radiative n’est plus négligeable et des photons sont produits par la recombinaison dans la jonction.

À titre indicatif, la polarisation inverse provoque un renforcement de la barrière de potentiel (élargissement de la zone de déplétion par recombinaison) et un courant dû aux porteurs minoritaires (trous dans le type n et électrons dans le type p). Ce courant, très faible, varie peu en fonction de la tension.

Cette caractéristique est à la base des diodes, composant électronique qui ne permet le passage de courant que dans un sens.
Ce schéma montre la relation  typique entre l’intensité du courant et le potentiel d’un tel composant :

Couleur émise

La longueur d’onde λ, soit la couleur de la lumière émise, dépend du fameux saut d’énergie :

Egap = h.c / λ.

Avec,

  • h : constante de Planck
  • c : vitesse de la lumière
  • λ : longueur d’onde [m].

Liée aux matériaux et au taux d’impuretés de la diode, la lumière émise est quasi monochromatique, ce qui signifie que la couleur émise sera saturée.

Chaque recombinaison n’est pas radiative : il n’y a donc pas d’émission de photon à tous les coups, ce qui réduit l’efficacité de la Diode électroluminescente. Il est donc nécessaire pour les fabricants d’allier des matériaux et des moyens de conception qui permettent d’optimiser le rendement radiatif. Pour l’éclairage, les fabricants ont donc dû faire appel à leur imagination pour améliorer la performance de la jonction : on parle d’hétérojonctions multiples pour les LED de puissance contre des homojonctions pour les LED classiques de basse puissance.