Identifier les causes d'un problème de condensation superficielle


Une trop grande production de vapeur

L’humidité produite peut provenir soit :

De l’occupation du bâtiment

La production de vapeur est très variable en fonction du type de bâtiment (bureaux, école, hôpital, hall de sports, etc.) et de son occupation.

Le tableau ci-dessous indique différentes sources de production de vapeur ainsi que la quantité de vapeur d’eau correspondant

Sources de vapeur d’eau Production de vapeur d’eau
Un occupant au repos, assis ou avec une légère activité* : 0,055 (kg/h)
Un occupant debout avec une légère activité* : 0,090 (kg/h)
Un occupant debout avec une activité moyenne (travail ménager, travail sur machine, …)* : 0,130 (kg/h)
Plantes vertes** 0,02 à 0,05 kg d’eau par plante et par jour

* : Norme Iso 7730
** : certaines plantes comme le papyrus émettent plusieurs litres d’eau par jour dans l’environnement.

Il est difficile de diminuer de manière significative la production de vapeur de ces différentes sources à l’intérieur d’un bâtiment. Par contre, afin que l’augmentation du taux d’humidité due à cette production de vapeur reste acceptable, celle-ci doit être compensée par une ventilation suffisante. Cette ventilation consiste, d’une part, en une ventilation de base qui doit assurer la qualité de l’air en temps d’occupation normale (occupants, plantes, nettoyage, …) et d’autre part, en une ventilation intensive qui doit compenser une production spécifique de vapeur (ventilation dans les cuisines, dans la buanderie, …).
D’autre part, une production de vapeur trop importante peut être évitée dans certains cas. Exemples :

  • un grand aquarium sans recouvrement adéquat,
  • des étangs à l’intérieur,
  • des appareils à cycle de combustion ouvert sans évacuation vers l’extérieur (poêle au gaz ou au mazout, petit chauffe-eau mural, etc.),
  • l’usage intensif d’humidificateur.

De causes extérieures

Un taux trop important d’humidité peut également provenir des causes extérieures suivantes :

  • les infiltrations d’eau de pluie,
  • l’humidité ascensionnelle,
  • l’humidité de construction,
  • l’humidité accidentelle.

Ces causes extérieures considérées comme des anomalies doivent être supprimées avant d’envisager toute autre mesure pour éliminer les problèmes de condensation ou de moisissure.


Une ventilation insuffisante

Afin que l’augmentation du taux d’humidité due à la production de vapeur à l’intérieur du bâtiment reste acceptable, celle-ci doit être compensée par un renouvellement d’air. L’air humide intérieur est ainsi remplacé par de l’air extérieur plus sec.

Le schéma ci-dessous donne l’évolution de la teneur en humidité de l’air du local (xi) en fonction du taux de ventilation (ou taux de renouvellement) “n” (en h-1).

Evolution de xi en fonction de n.

xe = 3 g/kg; D = 0,1 kg/h; V = 32,5 m³; xi = xe + 2,538/n.

avec,

  • xe : teneur en humidité de l’air extérieur;
  • D : production d’humidité dans le local;
  • V : volume du local
  • n : le taux de renouvellement (h-1).

On constate que :

  • Des taux de ventilation très bas ont pour conséquence des teneurs en humidité très élevées de l’air intérieur.
  • Une trop forte augmentation du taux de ventilation n’a pratiquement plus d’influence sur la teneur en humidité de l’air du local, mais par contre va augmenter la consommation d’énergie pour le chauffage du bâtiment.

Le renouvellement d’air se fait soit de manière correcte par un système de ventilation contrôlée ( mécanique – simple ou double flux- ou naturelle), soit, de manière “archaïque”, par de simples infiltrations (au travers des fentes et fissures, par l’ouverture des fenêtres, etc.).

Le renouvellement d’air par les infiltrations

Le renouvellement d’air par de simples infiltrations se rencontre encore très souvent dans les écoles. Mais si le bâtiment est trop étanche, le renouvellement d’air peut être insuffisant et cela peut mener à des problèmes de condensation superficielle. De toute façon, le renouvellement d’air par les infiltrations ne constitue pas une manière correcte d’assurer la ventilation. En effet, les défauts d’étanchéité peuvent être à l’origine d’une condensation interstitielle, c.-à-d.. une condensation à l’intérieur des éléments de construction (murs, toitures, etc.) et non pas à leur surface. En effet, l’air chaud et humide qui passe au travers de ces défauts d’étanchéité rencontre des éléments de plus en plus froids et la vapeur d’eau qu’il contient condense dès que des températures suffisamment basses sont atteintes. Dans une toiture inclinée, la condensation va provoquer des dégâts (moisissures, pourrissement, etc.).
Ainsi, mieux vaut un bâtiment étanche à l’air avec un système de ventilation contrôlé, tant pour éviter les problèmes de condensation interstitielle, que pour économiser l’énergie ou que pour assurer le confort.

Étanchéité à l’air des bâtiments

Une mauvaise étanchéité du bâtiment ne se voit pas forcément lors d’une inspection à l’œil nu.

Des murs extérieurs sans finition intérieure engendrent une mauvaise étanchéité. Les toitures inclinées sont souvent très perméables à l’air lorsque la finition intérieure est disjointe, incorrecte ou absente.

L’étanchéité à l’air dépend en grande partie de la conception et de la qualité d’exécution des détails de construction. L’utilisation de blocs de béton non plâtrés, par exemple, peut mener à une très mauvaises étanchéité du bâtiment. Le simple fait de recouvrir ces blocs d’une couche de peinture assez épaisse (équivalent à un plafonnage pour ce qui est de l’étanchéité à l’air) peut diviser par 10 la perméabilité à l’air.

Une mauvaise étanchéité peut être due aux fuites que représentent les ouvertures entre locaux à l’intérieur du volume protégé et en dehors de celui-ci.

L’étanchéité à l’air d’un bâtiment n’est pas nécessairement uniforme, elle peut être différente d’un local à l’autre.

Les anciens châssis sont, en général, perméables à l’air; les nouveaux sont beaucoup plus étanches.

Évaluer

Si vous voulez en savoir plus sur l’évaluation de l’étanchéité d’un bâtiment, cliquez ici !

Le renouvellement d’air par une ventilation contrôlée

Une ventilation de bâtiment est correcte si elle est contrôlée. Cela implique une amenée d’air extérieur dans certains locaux et une évacuation de l’air intérieur humide dans d’autres.

La ventilation des bâtiments doit répondre à la réglementation wallonne et à la norme NBN D 50-001. Les débits de ventilation y sont, entre autres, définis.

La réglementation wallonne est d’application depuis le 1er décembre 1996.
Elle concerne les logements, les bâtiments d’hébergement (hôpitaux, homes, hôtels, internats, casernes, prisons, …), les bâtiments scolaires (y compris centre PMS) et les immeubles de bureaux (administration d’une entreprise, d’un service public, d’un commerce) ou les bâtiments qui, à la suite d’une modification de leur utilisation, sont affectés à l’une ou l’autre de ces destinations.

La ventilation peut se faire de manière naturelle ou mécanique. Selon que l’extraction ou/et l’évacuation se font de manière naturelle ou mécanique, on parle de système A, B, C ou D (Norme NBN D 50-001).

Évacuation d’air
Naturelle Mécanique
Amenée d’air Naturelle Système A Système B
Mécanique Système C Système D

Le respect de la norme ne suffit pas à garantir que les bâtiments seront correctement ventilés les occupants sont simplement assurés qu’ils disposent de la possibilité de ventiler correctement.

Évaluer

Pour évaluer correctement la ventilation contrôlée de votre bâtiment, cliquez ici !

Des ponts thermiques

Un pont thermique est un point faible dans l’isolation thermique de l’enveloppe du bâtiment.
En hiver, au droit d’un pont thermique, la température de surface de la paroi à l’intérieur du bâtiment est plus basse que celle des surfaces environnantes. Si la température à cet endroit est égale ou inférieure à la température de rosée de l’air intérieur, il va y avoir condensation superficielle.

Pour une paroi, la connaissance des résistances thermique des différentes couches permet de déterminer la température intérieure de surface (θoi) pour une température extérieure (θe) et une température intérieure (θi) données.

La connaissance de cette valeur détermine le facteur de température τ de la paroi.

Au droit d’éléments de construction ou de ponts thermiques complexes, il est difficile de déterminer la température intérieure de surface en un point (θoi) manuellement. Ce calcul se fait par programmes informatiques (basés, par exemple, sur la méthode des éléments finis ou des différences finies). Il donne les valeurs du facteur de température τ en différents points du pont thermique et donc le facteur de température minimum τ min.

avec,

  • θoi min : la température intérieure de surface minimum du pont thermique.
Exemple.

τ1 = 0,585;
τ2  = 0,8;
τ3 = 0,91;
τ4 = 0,455;
τ5 = 0,61;
τ6 = 0,55;
τ7 = 0,6;
τ8 = 0,84.

τmin = τ4 = 0,455

Le facteur de température en différents points d’un pont thermique est entièrement déterminé par la configuration et la constitution du pont thermique. Il caractérise le pont thermique. Une fois déterminé, il va donc permettre de calculer la température intérieure de surface (θoi) en ce point pour n’importe quelles températures extérieure (θe) et intérieure (θi) données.

Ainsi, alors que pour une paroi, la résistance thermique d’une paroi permet d’évaluer la température de surface intérieure, pour un pont thermique, c’est la connaissance du facteur de température τ qui permet de l’évaluer.


Une température intérieure des locaux trop faible

Il y a risque de condensation superficielle sur une surface intérieure d’un local si la température de surface (θoi) est égale ou inférieure à la température de rosée(θd) de l’air intérieur. Or, pour une température extérieure (θe) donnée, la température intérieure de surface des parois (θoi) dépend non seulement de la résistance thermique de la paroi, mais également de la température intérieure du local.

Donc au plus l’air intérieur est chauffé, au plus la température de surface est élevée, au moins le risque de condensation superficielle est grand.

Si un local est non chauffé, il convient donc de prendre des mesures pour que la vapeur d’eau produite dans les locaux occupés ne puisse y pénétrer.

D’autre part, dans les locaux non chauffés, le niveau d’isolation a une influence non négligeable sur la température moyenne du local : dans des bâtiments bien isolés, les locaux non chauffés sont beaucoup plus chauds que dans les bâtiments identiques mais non isolés.

Exemple : maison unifamiliale (Pleiade)

Influence du niveau d’isolation sur la température du grenier dans la maison PLEIADE
Niveau d’isolation K23 K27 K35 K45 K55 K70
Température moyenne du grenier non chauffé 13,4 13,4 12,3 11,6 10,6 10,0

Lien entre les différents paramètres et évaluation d’un risque de condensation superficielle

1. Calcul de l’humidité absolue de l’air intérieur (xi) (sans formation de condensation superficielle)

Si, dans un local avec une production d’humidité D (kg/h) et un renouvellement n (h-1) (c.-à-d. un volume de ventilation nV (m³/h)), de la condensation ne se forme à aucun endroit, on peut poser, en régime stationnaire, que la quantité d’humidité évacuée avec l’air ventilé par unité de temps est égale à la somme de la quantité d’humidité apportée avec l’air ventilé par unité de temps et de la quantité de vapeur d’eau produite dans le local.

Ce raisonnement conduit à la relation (voir NIT 153, annexe page 77) :

avec,

  1. xi : teneur en humidité de l’air du local (geau/kgair)
  2. φe : humidité relative (%) de l’air extérieur
  3. xse : teneur en humidité de saturation de l’air extérieur (geau/kgair)
  4. D/nV : rapport entre la production d’humidité (kg/h) et le débit de ventilation dans le local (m³/h)

2. Calcul du point de rosée de l’air du local (θd)

On peut calculer la température de rosée (θd) correspondant à la teneur en humidité du local (xi) à partir du diagramme de l’air humide.

Humidité relative de l’air en fonction de la teneur absolue en humidité de l’air (x) et de la température de l’air (θ).

Ambiance intérieure (point A) : xi = 8,7 geau/kgair; θi = 20°C –> θ= 12°C

3. Calcul de valeurs intermédiaires

Pour différentes valeurs de température intérieure (θi) et différentes valeurs de température extérieure (θe), on peut calculer la valeur :

4. Évaluation du risque de condensation

Il ne se formera pas de condensation sur une paroi intérieure d’un local ou sur la face intérieure d’un pont thermique si :

avec,

avec,

5. Exemple d’évaluation du risque de condensation

Évaluer

Si vous souhaitez voir, par un exemple, comment évaluer concrètement le risque de condensation au droit d’un pont thermique dans un immeuble de bureau, cliquez ici !