Évaluer l'étanchéité à l'air


Importance d’une bonne étanchéité

Le confort

Une mauvaise étanchété à l’air des bâtiments engendre des courants d’air et provoque une sensation d‘inconfort.

Exemple : courants d’air au niveau des joints de fenêtre et de porte.

Un cas typique conduisant à l’établissement d’un courant d’air est celui d’un plateau de bureaux paysager où des fenêtres donnent sur deux façades d’orientations différentes : suite à l’effet du vent, une façade est en surpression et l’autre en dépression, entraînant un courant d’air transversal. Cet effet de courant d’air se fait d’autant plus ressentir que les radiateurs placés devant les fenêtres ne couvrent pas toute la largeur de celles-ci et ne compensent pas l’infiltration d’air froid.

Le même phénomène se présente lorsqu’il y a des portes donnant sur l’extérieur et non protégées par un sas.

De plus, le manque d’étanchéité à l’air engendre un affaiblissement de l’isolation acoustique, ce qui pose surtout problème dans les villes.

Les économies d’énergie / la puissance de chauffe

Les économies d’énergie

En hiver, l’air chaud s’échappe par les fuites d’air d’un bâtiment trop peu étanche, l’air froid s’y engouffre. Un taux de ventilation réel de 0,5 renouvellement/h pour un bâtiment de dimension 60 m x 10 m x 12 m, soit 7 200 m³ va entraîner une consommation hivernale de :

(0,5 x 7 200) [m³/h] x 5 800 [h] x 0,34 [Wh/m³.K] x (15° – 6°) / 1 000

= 64 000  [kWh/an]

 où,

  • 5 800 est le nombre d’heures de la saison de chauffe
  • 0,34 Wh/m³xK est la capacité thermique de l’air.
  • 15° est la température moyenne intérieure, tenant compte d’un abaissement nocturne et d’un apport équivalent de 3° par les apports “gratuits”
  • 6° est la température moyenne extérieure hivernale dans le centre de la Belgique

Soit un équivalent de +/- 4 000 € par an , si la chaleur est fournie par du combustible fuel à 0,625 €/litre.

L’impact de l’inétanchéité à l’air d’un bâtiment est d’autant plus important que celui-ci est récent et donc bien isolé. En effet, la part des pertes dues à la ventilation dans le total des déperditions y est beaucoup plus importante.

La puissance de chauffe

Le dimensionnement de l’installation de chauffage se fait sur base des pertes de chaleur par transmission (par les murs, les fenêtres, la toiture, …) et des pertes de chaleur par ventilation. Si l’étanchéité du bâtiment est très mauvaise, les pertes de chaleur par ventilation seront plus importantes que celles dont on aura tenu compte dans les calculs menant au dimensionnement de la chaudière (la norme NBN 62-003 prévoit un taux de renouvellement horaire de l’air de 1), la chaudière sera sous-dimensionnée par rapport aux besoins réels et, par temps très froid, on n’arrivera pas à chauffer convenablement.

Exemple.

Le CSTC a été appelé dans une école où il s’était avéré impossible de chauffer les locaux au-delà de 10 à 13 °C durant les moments froids et venteux de l’hiver 1984-1985, malgré une installation de chauffage correctement dimensionnée. Il a mesuré une étanchéité n50 de 30/h, ce qui correspond à un taux de ventilation réel saisonnier moyen de 1,5/h… Les parois étaient réalisées en blocs de béton poreux, laissés apparents (sans plafonnage). Et par temps venteux, l’air extérieur traversait la paroi…

Mais ce cas est très rarement rencontré.

Le mauvais fonctionnement du système de ventilation

Le système de ventilation ne fonctionnera correctement que si le bâtiment est relativement étanche à l’air.

Dans son article “La ventilation et l’infiltration dans les bâtiments : la situation en Belgique” (1986), le CSTC précise qu’un système de ventilation mécanique ne peut fonctionner correctement que pour un taux de renouvellement de l’air à 50 Pa (n50) inférieur à 5/h.


Niveaux de référence

Étanchéité globale

En Wallonie, il n’existe pas de recommandations concernant l’étanchéité à l’air globale d’un bâtiment.

Par contre, la norme européenne EN 13779 recommande un taux de renouvellement d’air maximum à 50 Pa(n50) :

  • de 1/h pour les bâtiments hauts (> 3 étages);
  • de 2/h pour les bâtiments bas.

On peut également se référer à la norme NBN D 50-001 qui recommande :

  • n50 < 3/h si ventilation mécanique,
  • n50 < 1/h si récupérateur de chaleur.

À titre de comparaison, la région de Bruxelles-Capitale imposera en 2018 un niveau d’étanchéité à l’air n50 < 0.6/h pour toute construction neuve, et n50 < 0.72/h pour les rénovations assimilées à de la construction neuve.

Étanchéité des fenêtres

En Belgique, les bâtiments des services publics doivent satisfaire aux exigences d’étanchéité suivantes :

Hauteur du bâtiment (h en [m]) η50 [m³/h.m]
h < 10 < 3,8
10 < h < 18 < 1,9
h > 18 < 1,3

Source : STS 52 Menuiserie extérieure en bois : fenêtres, portes-fenêtres, façades légères – Bruxelles – 2005.

Ces exigences sont relativement sévères par rapport aux autres pays (seuls les pays scandinaves ont des exigences plus sévères).

La figure ci-dessous donne un aperçu des valeurs d’étanchéité à l’air des menuiseries imposées par un certain nombre de pays occidentaux.

Aperçu des exigences d’étanchéité à l’air des menuiseries dans différents pays occidentaux.


Comment évaluer sa situation ?

1° possibilité : faire procéder à une évaluation par une société spécialisée

  1. On peut faire réaliser des essais de pressurisation du bâtiment pour mesurer l’étanchéité globale et localiser les fuites. Si cette technique fonctionne bien pour un bâtiment domestique, il semble difficile de l’appliquer pour un bâtiment tertiaire.
  2. On peut procéder à une analyse par gaz traceur : une dose bien connue de gaz est dispersée dans une ambiance; une heure plus tard, on vient mesurer quelle est la teneur du gaz encore présente; si celle-ci est faible, c’est que le taux de ventilation est élevé.

2° possibilité : évaluer approximativement sa propre situation

Ci-dessous, nous vous proposons d’analyser votre bâtiment. Ces observations permettront de situer votre bâtiment par rapport à d’autres bâtiments (statistiques) dans lesquels des mesures de pressurisation ont été faites.

A. Observation de la situation

Observation des parties courantes

On vérifie que les murs, s’ils sont réalisés en matériaux poreux (maçonneries de briques, blocs de béton lourds ou légers, …) sont recouverts d’une couche étanche à l’air. Celle-ci peut être un plafonnage, des plaques de plâtres enrobées correctement rejointoyées, un pare-vapeur correctement placé. Une couche épaisse de peinture filmogène est également valable au niveau de l’étanchéité à l’air. Une couche isolante en matériau synthétique ou en verre cellulaire correctement posée rend également le mur étanche à l’air.
Remarques.

  • En cas de mur creux dont la maçonnerie intérieure est apparente, l’enduit étanche à l’air peut avoir été placé sur le mur intérieur du côté coulisse; dans ce cas, elle n’est pas visible à l’oeil.
  • Il arrive que les murs soient enduits jusqu’au faux plafond mais pas au-delà. Dans ce cas, si le faux plafond n’est lui-même pas étanche à l’air, on ressentira des fuites au niveau du faux plafond.

De la même façon, on vérifie que la toiture inclinée, si les locaux sous les combles sont utilisés, dispose d’une bonne étanchéité à l’air. C’est le cas si la finition intérieure est constituée d’un plafonnage, de plaques de plâtre enrobées correctement rejointoyées, de panneaux de fibres de bois liées au ciment, avec enduit. Cette étanchéité à l’air est également assurée avec un pare-vapeur correctement placé ou avec un isolant peu perméable à l’air (mousses synthétiques, verre cellulaire) si celui-ci est correctement posé. Au contraire, le plafond n’est pas rendu étanche par un lambris en planchettes de bois ou par des lamelles en aluminium avec joints ouverts. Il ne l’est pas non plus dès que la finition intérieure est perforée par des canalisations électriques ou pour toute autre raison.

Les toitures plates correctement réalisées (toitures chaudes ou toitures inversées) sont automatiquement étanches à l’air à cause de la présence du pare-vapeur et de la membrane d’étanchéité continue caractéristique des toitures plates. La toiture froide doit être proscrite car la ventilation de l’espace situé entre l’étanchéité et l’isolant augmente les risques de courants d’air néfastes.

Observation des raccords et percements

Les infiltrations d’air peuvent avoir lieu au niveau :

  • Des châssis de fenêtres :Remarque : on croit souvent que les pertes par les fenêtres représentent la majorité des pertes par infiltrations. Or, il apparaît que ces pertes n’en représentent en moyenne que 20 % bien que, dans certains cas (cas des menuiseries les moins étanches (n50 de 20 à 40 m³/hxm), elles s’élèvent jusqu’à 75 % de la totalité de ces pertes.
  • Des raccords entre les éléments de la construction (façade/toiture, façade/plancher au niveau de la plinthe, …).
  • Des percements (passage de conduites, portes, caisson de volet, boîtiers électriques, …).
  • Des raccords entre les menuiseries et les maçonneries.

Mauvais raccord entre le mur et la menuiserie.

Il convient donc de vérifier la jonction entre les différents éléments de construction, ou un percement dès que ce dernier touche la couche de la façade qui assure l’étanchéité à l’air.
Cette vérification se fait :

  • Soit à l’œil ou à la main.
  • Soit à l’aide d’une feuille de papier,par exemple, pour vérifier l’étanchéité à l’air entre l’ouvrant et le dormant d’un châssis, on y place une feuille de papier. Si cette feuille coincée ne se déchire pas lors de la tentative d’extraction, l’étanchéité n’y est sans doute pas terrible…!
  • Soit à l’aide d’une bougie que l’on place devant les joints des zones à risque.
  • Des tâches de poussière peuvent également servir d’indice d’une mauvaise étanchéité locale.
  • Enfin au niveau des fuites évidentes, une mesure plus précise peut être réalisée grâce à un anémomètre à fil chaud.

Au niveau du châssis même, on vérifie qu’il existe un joint entre l’ouvrant et le dormant du châssis. Ce joint d’étanchéité à l’air doit être en bon état et continu on vérifie en particulier sa continuité aux angles où il a tendance à se détacher plus vite. Il doit être dans un même plan sur tout le pourtour du châssis.

On vérifie aussi l’état du joint entre le cadre et le vitrage. Celui-ci ne peut êre fissuré ou décollé. Il ne peut avoir perdu sa souplesse.

B. Confrontation des observations aux statistiques

Certaines études statistiques ont été effectuées sur l’étanchéité de bâtiments existants.
Elles concernent :

  • l’étanchéité des menuiseries,
  • l’étanchéité des murs,
  • l’étanchéité de la toiture inclinée.

En vous basant sur ces études et sur les caractéristiques propres à votre bâtiment, il est possible d’en estimer par comparaison, l’étanchéité. Pour vérification, le résultat obtenu en additionnant les volumes d’air infiltré liés à ces différentes causes, peut être comparé à des observations statistiques :

  • d’étanchéité globale.

Étanchéité des menuiseries

Les anciennes menuiseries des immeubles existants ne répondent pas aux niveaux d’étanchéité recommandés. Nous n’avons pas trouvé de rapport de mesures faites en Belgique. Par contre, une étude menée aux Pays-Bas par Mr Van Gunst (1959) (1) et Mrs De Gids et Knoll (1981) (2) révèle notamment que :

  • La plupart des châssis construits avant 1959 ne satisfont pas aux normes néerlandaises modernes.
  • L’étanchéité des joints varie considérablement. M. De Gids a, en effet, mesuré des valeurs (à 50 Pa) allant de n50 = 1,6 à 36 m³/h.m; M. Van Gunst obtient quant à lui des valeurs de n50 situées entre 1,2 et 34 m³/h.m.
  • Les déperditions au droit des raccords entre la menuiserie et la maçonnerie ne sont pas négligeables; elles représentent, en moyenne, 40 % des pertes à travers l’ensemble des joints de la menuiserie.

(1) Van Gunst E. – Het raam in onze woning in verband met gezondheid en ekonomie. De Ingenieur, n° 4 en 11 – 1959.

(2) Knoll B. et De Gids W.F. – Luchtdoorlatendheid van 21 gevels met gevelelementen in drie seizoenen. Delft, IMG-TNO, rapport C 490, november 1981.

Les nouveaux châssis (depuis environ 1985), quant à eux, répondent pour la plupart aux exigences requises. Dans le cas contraire, la mauvaise étanchéité est, sauf exceptions, due à un placement peu soigné.

Étanchéité des murs

Des mesures d’étanchéité dans divers bâtiments ont montré que tous les types de murs, s’ils sont plafonnés, sont très étanches : taux de ventilation à 50 Pa(n50) de moins de 1 m³/h.m². Par contre les murs creux en blocs de béton lourds non plafonnés donnent des taux de ventilation à 50 Pa (n50) d’environ 10 m³/h.m².

Étanchéité de la toiture inclinée

Exemples.

Des mesures d’étanchéité ont été réalisées dans 2 écoles de construction récente, dans un immeuble de bureaux et dans une habitation individuelle dont la constitution de la toiture inclinée est donnée ci-dessous.

  1. Finition intérieure (lambris de bois ou lamelle en aluminium avec joints non fermés).
  2. Isolant.
  3. Chevron.
  4. Sous-toiture de type fibres ciment – cellulose.
  5. Tuiles.

Celles-ci ont donné un taux de ventilation à 50 Pa(n50) d’environ 100 m³/h.m².

On a ensuite rajouté une feuille en PVC entre l’isolant et le plafond d’une des classes. Suivant la qualité d’exécution, on a obtenu les résultats suivants lors de nouvelles mesures d’étanchéité.

Conception de la toiture

n50 (1/h)

Pas de feuille de PVC entre l’isolant et le plafond

27

Une feuille de PVC (0,2 mm) entre l’isolant et le plafond, pas de bande adhésive sur les joints.

12

Une feuille de PVC (0,2 mm) entre l’isolant et le plafond, bande adhésive sur les joints.

5

Étanchéité globale

L’étanchéité de 45 écoles a été mesurée entre 1986 et 1987. Il est apparu que l’étanchéité des bâtiments varie très fortement : le taux de renouvellement d’air à 50 Pa(n50) varie de 0,5/h à 40/h. Il n’y a pas que les bâtiments les plus anciens où l’étanchéité à l’air est faible. Plusieurs bâtiments récents mesurés étaient très peu étanches à l’air; la plupart du temps, cette mauvaise étanchéité était due à des fuites d’air au niveau de la toiture.

Taux de ventilation à 50 PA de bâtiments en fonction de l’année de construction.

À partir des mesures dont il est question ci-dessus mais également d’autres mesures, on peut dire, d’une façon plus générale, que l’étanchéité à l’air des bâtiments en Belgique varie grosso-modo de n50 = 1/h à n50 = 30/h.

C. Évaluation des débits d’air par des ouvertures dans la façade (vitre cassée, porte ouverte, …)

Petite ouverture
À titre de repère, la vitesse de l’air s’²chappant d’une petite ouverture dans une façade (vitre brisée, fente sous une porte, fente de boîte aux lettres, …) est en moyenne de l’ordre de 1 m/s. Cette valeur est valable tant que la section d’ouverture ne dépasse pas 0,5 m². Mais pour la facilité mnémotechnique, on peut calculer la perte énergétique liée à un trou d’1 m² dans une enveloppe. Un débit de 1 m³/s (1m² x 1 m/s) s’échappera, ce qui va entraîner une consommation hivernale de :

1 [m³/s] x 3 600 [s/h] x 5 800 [h/saison chauffe] x 0,34 [Wh/m³.K] x (15° – 6°;) / 1 000

= 63 000 [kWh/an]

où :

  • 15° est la température moyenne intérieure, tenant compte d’un abaissement nocturne et d’un apport équivalent de 3° par les apports “gratuits”,
  • 6° est la température moyenne extérieure hivernale dans le centre de la Belgique,
  • 0,34 Wh/m³.K est la capacité thermique de l’air.

Retenons donc un équivalent de +/- 4 000 € par an et par m² d’ouverture permanente, si la chaleur est fournie par du combustible fuel à 0,625 €/litre.
Grande ouverture
Si l’ouverture est plus importante (ouverture permanente d’une porte d’entrée du bâtiment, par exemple), le phénomène est plus complexe. On constate que de l’air chaud va s’échapper en partie supérieure de la porte et que de l’air froid le remplacera en partie inférieure. Au centre l’écoulement d’air sera pratiquement nul (tourbillons).

On peut approcher le débit d’air par la loi empirique suivante :

Débit = C x Section x (g x Hauteur x DeltaT°/T° ext) exp (1/2)

  • les températures sont exprimées en Kelvin,
  • où le coefficient C est généralement pris égal à 0,15 … 0,2
  • et où “exp (1/2)” signifie qu’il faut prendre la racine carrée de la parenthèse.

Exemple : soit une porte de 1,8 sur 2 m de section, une température intérieure de 20°C et extérieure de 6°C, soit 279 K.

Débit = 0,15 x 3,6 x (9,81 x 2 x 14/279) exp (1/2) = 0,53 m³/s. Une vitesse moyenne de sortie d’air au travers de la porte est donc de 0,53/3,6 = 0,15 m/s.

Remarque : le rapport de conférence du CSTC, Ventilation and Air Quality in Belgian Buildings : a state of the art. / 9th AIVC Conference, Gent, Belgium, 12-15 september 1988 / par P. Wouters, ainsi que l’article La ventilation et l’infiltration dans les bâtiments : la situation en Belgique. / par P. Wouters ont été largement utilisés pour écrire ce chapitre.