Évaluer un risque de condensation superficielle au droit d'une terrasse en béton


Description de la situation

Un immeuble de bureaux possède des terrasses en béton en encorbellement sans coupure thermique. On améliore la situation en ajoutant une isolation d’une résistance thermique de 1 m²xK/W au droit du linteau et entre la dalle et le plancher.

Schéma de principe de la terrasse en encorbellement.

L’immeuble de bureaux est équipé d’un conditionnement d’air contrôlant la qualité de l’air intérieur.
La température de jour (ηi) est maintenue à 21°C et l’humidité relative (φi) à 50 %.
La nuit et le weekend, nous avons imaginé deux possibilités :

  1. le chauffage est coupé et la ventilation continue,
  2. la ventilation et le chauffage sont coupés.

La température descend alors jusqu’à 18°C la nuit et jusqu’à 16°C le week-end.

On voudrait évaluer le risque de condensation à l’intérieur des locaux au droit des terrasses en encorbellement.


Calcul du pont thermique : facteur τ

Tout point intérieur d’un détail constructif ou d’un pont thermique est caractérisé par un facteur de température τ. τmin est la valeur minimale de ces différents τ.
Au droit d’éléments de construction ou de ponts thermiques complexes, il est difficile de calculer les facteurs de température manuellement. Ces calculs se font par programmes informatiques (basés, par exemple, sur la méthode des éléments finis ou des différences finies). Les facteurs de température du pont thermique de la terrasse en encorbellement de l’immeuble de bureau ont été calculés à l’aide du programme KOBRU 82. En voici les résultats :

τ1 = 0,705;
τ2 = 0,905;
τ3 = 0,955;
τ4 = 0,785;
τ5 = 0,98;
τ6 = 0,885;
τ7 = 0,545;
τ8 = 0,77.
τmin = τ7 = 0,545
Remarque : les résultats de nombreux ponts thermiques sont repris dans la NIT 153.


Évaluation du risque de condensation

Il ne se formera pas de condensation superficielle si :

Avec,

  • θi : la température intérieure,
  • θe : la température extérieure,
  • θd : la température de rosée correspondant à l’ambiance intérieure.

Le jour

Température extérieure (°C) Température intérieure (°C)

φi = 50 %

θd (°C)

La journée – 10 21 10 0,65
– 5 21 10 0,58
0 21 10 0,48
5 21 10 0,29
8 21 10 0,15
10 21 10 0

0,65 < τmin = 0,545 ? : non !

Il y a donc risque de condensation… !!!

Néanmoins, on peut calculer à partir de quelle température extérieure il y a risque de condensation sur le pont thermique ayant un τmin de 0,545 :

τmin = (θd – θe) / (θi – θe)

où,

  • τmin = 0,545
  • θi = 21°C
  • φ= 50 %
  • ssi θd = 10°C

0,545 = (10 – θe) / (21°C – θe)

θe = – 3,2°C

Occurrence des températures extérieures.

Vu que la température de – 3°C n’est atteinte que 150 heures par an, la période durant laquelle de la condensation superficielle se forme est négligeable.

La nuit

1° hypothèse : le chauffage est coupé et l’humidité relative intérieure (φi) est maintenue à 50 %

Dans ce cas, la température intérieure descend jusqu’à 18°C. La température de rosée descend à 7,4°C.

Température extérieure (°C) Température intérieure minimale (°C)

φi = 50 %

θd (°C)
-10 18 7,4 0,62
-5 18 7,4 0,54
0 18 7,4 0,41
…. ….

Température extérieure en dessous de laquelle il y a risque de condensation sur le pont thermique (τmin de 0,545) ? :

τmin = (θd – θe) / (θi – θe)

0,545 = (7,4 – θe) / (18°C – θe)

θe = -5,3°C

Cette température extérieure n’est atteinte que 57 heures par an; le risque de rencontrer de réels problèmes est encore moins élevé que le jour !

2° hypothèse : le chauffage et le traitement de l’air sont coupés

Dans ce cas, la température intérieure se refroidit jusque 18°C. Le point de rosée reste à 10°C mais l’humidité relative intérieure augmente.

Diagramme de l’air humide.

Température extérieure (°C) Température intérieure minimale (°C)

 

Humidité relative intérieure (φi) θd (°C)

– 10 18 60 % 10 0,71
– 5 18 60 % 10 0,65
0 18 60 % 10 0,56
5 18 60 % 10 0,38

Température extérieure en dessous de laquelle il y a risque de condensation sur le pont thermique (τmin de 0,545) ? :

τmin = (θd – θe) / (θi – θe)

0,545 = (10 – θe) / (18°C – θe)

θe = 0,42°C

Cette température est rencontrée 548 heures par an. Le risque de rencontrer des problèmes est plus élevé que dans les cas précédents.

Le week-end

Durant cette période, la température peut descendre jusqu’à 16°C.

Si la ventilation des locaux est maintenue, aucun problème de condensation ne peut être rencontré.

Par contre, si la ventilation est coupée durant cette période, l’humidité relative intérieure monte très vite. Par l’arrêt de la ventilation, le local est mis en dépression par rapport à la façade soumise au vent. Et vu que les parois ne sont jamais tout à fait étanches, de l’air extérieur y entre. L’humidité relative intérieure sera le résultat d’un mélange partiel entre l’air intérieur et l’air extérieur. Pour faire des hypothèses réalistes, l’enregistrement de valeurs atteintes par l’humidité relative intérieure est indispensable. Cette situation n’a pas été analysée.


Conclusions

Le risque de condensation superficielle pendant une longue durée n’existe pas dans les bureaux possédant un système de conditionnement d’air permettant de maintenir l’humidité relative de l’air à 50 %, même dans la situation critique d’un pont thermique où le facteur de température τ a une valeur de 0,545.

La situation devient critique quand la température de l’air intérieur diminue et que de l’humidité relative intérieure augmente.

À noter que la différence entre 40 et 60 % d’humidité relative ne se sent pas. Cette dernière pourrait être réglée à 40 %, ce qui diminuerait encore le risque de condensation. Néanmoins, il ne faut pas descendre en-dessous !