Humidificateurs à vapeur


Principe de fonctionnement

Un humidificateur à vapeur injecte dans l’air à humidifier de la vapeur d’eau. Celle-ci est produite soit dans une chaudière à vapeur (grosses installations), soit dans des appareils autonomes fonctionnant … comme une bouilloire électrique, en quelque sorte !

La vapeur est conduite vers les rampes d’injection (tubes percés d’orifices calibrés), rampes placées soit dans les caissons de traitement d’air, soit directement dans la gaine d’air conditionné.

Schéma principe de fonctionnement - 01. Schéma principe de fonctionnement - 02.

Rampe d’injection.

La vapeur arrive sèche dans la rampe (gaz invisible). Lors de son contact avec l’air froid, elle se condense en microgouttelettes (brouillard visible). L’air s’échauffe alors de 10 à 15 K, grâce à la chaleur de condensation de la vapeur. Cette chaleur permet la revaporisation de la vapeur, qui repasse à l’état gazeux invisible, mélangé dans l’air. Finalement, l’ensemble du processus est pratiquement isotherme (= la température de l’air après humidification est pratiquement égale à celle avant l’humidification).

Schéma principe de fonctionnement - 03.

Mais ce processus montre bien qu’il ne faut pas placer les appareils de contrôle (thermomètre et hygromètre) trop prêt de la rampe. A priori, une distance de 3 m minimum est recommandée, mais cette distance dépend de la température de l’air humidifié. Un calcul de la distance humidificateur-sonde peut être réalisé.


Évolution dans le diagramme de l’air humide

En première approximation, l’humidification de l’air par l’injection de vapeur entraîne un déplacement vertical dans le diagramme de l’air humide.

Schéma diagramme de l'air humide.

L’air “sec” (1) suit une évolution à température constante pour se retrouver “humide” au point (2).

Cette évolution surprend ! Intuitivement, on imaginerait un échauffement de l’air par le jet de vapeur…

En réalité, un très léger échauffement existe, mais négligeable dans la pratique.

Pourquoi ? Il faut comprendre la chose en décomposant l’énergie contenue dans la vapeur,

  • en énergie de chauffage de l’eau (de 10 à 100°C),
  • et en énergie de changement d’état (de liquide à vapeur).

Cette énergie de vaporisation lui est nécessaire pour rester à l’état vapeur dans l’air. En quelque sorte, l’eau se diffuse dans l’air “en apportant sa propre énergie de vaporisation”. S’il y a échauffement de l’air, c’est parce que quelques grammes d’eau chaude sont mélangés dans l’air. Et donc l’image exacte de l’humidification de l’air par un jet de vapeur est une droite légèrement inclinée vers la droite. Cette légère augmentation de température est très souvent négligée par le concepteur.

Schéma diagramme de l'air humide.

Exemple : un air à 23° 40 % HR sera humidifié à 24° 80 % HR par un jet de vapeur.

Ce qui est fondamental, c’est de voir les conséquences technologiques du choix d’un humidificateur à vapeur : la batterie de postchauffe à disparu !


Technologie

Système à production centralisée

Si le bâtiment dispose déjà d’un système de production de vapeur (hôpitaux, industries, …), on peut utiliser une partie de la vapeur produite pour humidifier l’air distribué dans les locaux.

Si l’ampleur de l’installation de climatisation nécessite un débit d’humidification fort important, il est même possible d’installer une chaudière à vapeur spécifique. Ce coût d’investissement est motivé par le coût d’exploitation plus faible : l’énergie de vaporisation est réalisée à partir d’un combustible (fuel ou gaz), par opposition à l’énergie électrique plus coûteuse des appareils autonomes.

La vapeur est vaporisée dans l’ambiance des locaux et respirée par les occupants. On sera dès lors attentif au traitement éventuel avec un produit toxique qu’aurait pu subir l’eau avant sa vaporisation (un traitement anti-oxygène dans la chaudière, par exemple). S’il y a risque de contamination, il est possible de prévoir un échangeur vapeur/vapeur qui vaporise de l’eau potable fraîche grâce à la vapeur issue de la chaudière.

Humidificateur autonome à vapeur – générateur à électrodes

La vaporisation de l’eau est réalisée au moyen d’électrodes suspendues dans un réservoir et mises sous tension. Le courant électrique s’établit entre les électrodes au travers de l’eau. Celle-ci s’échauffe jusqu’à ébullition. La vapeur produite peut être diffusée aussi bien dans une centrale de traitement d’air que dans la gaine de pulsion ou dans le local directement (avec une turbine de dispersion de la vapeur).

L’ensemble est installé dans une armoire métallique, généralement fixée au mur. Le raccordement entre l’humidificateur et le conduit d’air de climatisation sera en pente montante afin de ramener vers l’appareil d’éventuels condensats.

La consommation électrique est fonction de la surface des électrodes noyées dans l’eau. Le débit de vapeur produit est donc régulé via la régulation du niveau d’eau dans le réservoir.

> Avantage : l’eau du réseau ne doit pas être traitée puisqu’on a besoin des sels pour conduire le courant ! Une eau pure présenterait une conductivité électrique trop faible. En pratique, la conductivité de l’eau doit être comprise entre 125 et 1 250 µS/cm (dureté comprise entre 15° et 20°)

> Inconvénient : l’eau qui s’évapore laisse ses sels dans le réservoir ! Une purge de déconcentration automatique doit être réalisée par l’appareil. Il est possible de calculer le débit d’eau de déconcentration, en fonction de la teneur en sels de l’eau du réseau.

Malgré la déconcentration régulière, l’entartrage reste l’ennemi n°1 de l’humidificateur. Notamment parce que la couche calcaire fait office d’isolant sur les électrodes, diminue la conduction électrique et donc le débit de vapeur. Divers systèmes sont proposés pour résoudre ce problème :

  • Une injection de bulles d’air dans l’eau du réservoir pour maintenir les sels en suspension, entre deux périodes de déconcentration.
  • Une pompe pour réaliser la déconcentration, plutôt qu’une simple ouverture d’électrovanne, afin de renforcer la purge.

L’installation comprend également :

  • un détecteur de niveau d’eau de limite haute pour alarme (locale et à distance),
  • les équipements électroniques de contrôle du débit de vapeur, de déconcentration,
  • les contacteurs de puissance.

Humidificateur autonome à vapeur – générateur à résistances

Le chauffage et la vaporisation de l’eau sont réalisés via des résistances électriques immergées, du type barre ou serpentin qui chauffe à 1 100°C.

Ici, l’électricité ne traverse pas l’eau. Celle-ci ne doit dès lors pas être conductrice. Il est donc possible de la déminéraliser, ce qui évite beaucoup de problèmes de corrosion calcaire.

À défaut, il faudra prévoir un système de déconcentration automatique des sels.


Installation

La vapeur d’eau injectée dans l’air doit être de la vapeur sèche. À défaut, le mélange “eau + vapeur” qui sort des orifices crée des dépôts, des corrosions, … C’est dans ce but que les constructeurs des systèmes de production centralisée prévoient :

  • un séparateur et un purgeur de vapeur en amont de la rampe,
  • une sonde thermostatique (ou ” thermocontact “) qui empêche l’arrivée de vapeur à la rampe si la température est trop basse (c’est le cas au démarrage de l’installation),
  • une rampe généralement auto-réchauffée par la vapeur d’amenée, ce qui réévapore les condensats éventuels.

Si la vapeur est destinée à l’humidification de salles propres (informatique, hôpitaux,…), l’eau sera totalement déminéralisée et tous les équipements en contact avec la vapeur seront en acier inoxydable.

Si la diffusion a lieu dans une gaine d’air, des distances minimales d’humidification doivent être respectées pour éviter l’humidification des parois (attention à la présence de coudes, par ex.) et des équipements en aval.

La situation est particulièrement critique lorsque l’air à humidifier est froid (air pulsé à 16 ou 18°C, par exemple), puisque cela allonge la portée de l’humidification. De même, si un filtre est prévu en aval (un filtre absolu pour les salles d’opérations, par exemple), le risque d’humidification de ce filtre est grand et aurait des conséquences hygiéniques graves.

Le calcul de la portée minimale et des sécurités à prévoir pour les équipements en aval est réalisable.

Si nécessaire, on peut améliorer la situation par le placement d’un système de diffusion à rampes multiples qui permet la répartition uniforme de l’injection sur toute la section du conduit. La portée de l’humidification est alors fortement réduite.

Equipements complémentaires à prévoir :

  • une arrivée d’eau avec robinet d’arrêt,
  • une évacuation d’eau avec entonnoir et siphon,
  • une ligne 380 V pour l’humidificateur,
  • une ligne 220 V pour le régulateur à régulation proportionnelle,
  • le raccordement de l’hygrostat sur la conduite de reprise,
  • le raccordement de l’hygrostat de limite haute sur la conduite de pulsion,
  • un pressostat pour mettre hors service l’humidificateur lors de l’arrêt du ventilateur,
  • un bac-égouttoir de sécurité pour recueillir l’eau de ruissellement éventuel (1 à 2 m en amont des rampes et 3 à 50 m en aval, sur 30 cm de hauteur), relié à l’égout.

Avantages

  • La qualité hygiénique indiscutable des humidificateurs à vapeur par rapport aux humidificateurs à évaporation ou aux laveurs.
  • Leur fonctionnement sans bruit.

Pour les systèmes avec chaudière à vapeur

  • Le prix de revient de l’énergie par combustible (gaz, fuel) nettement inférieur par rapport à celui de l’énergie électrique (le coût total est fortement dépendant de la disponibilité et du coût de la vapeur dont on dispose).

Pour les systèmes autonomes électriques

  • Une facilité de régulation individuelle de l’humidité ambiante.

Inconvénients

  • Le coût et la maintenance d’une chaudière à vapeur spécifique.
  • Le coût de l’énergie électrique qui joue fortement en défaveur de l’humidificateur à vapeur autonome.
  • La sensibilité à l’entartrage des appareils autonomes, tout particulièrement ceux à électrodes dont on ne peut déminéraliser l’eau.

Coûts

En particulier

Le calcul du coût de l’humidification est possible pour une installation donnée. C’est d’autant plus important que la vaporisation est effectuée sur base d’énergie électrique (appareil autonome).

En général

D’une façon générale, les coûts de maintenance et d’amortissement indiqués ci-dessous sont tirés d’une *étude comparative sur les systèmes d’humidification* réalisée en Suisse. Les coûts de l’énergie sont établis sur base d’une humidification 10 h/jour, 50 h/semaine et sur base d’un prix du fuel à 0,25 €/litre. Une occupation continue des bâtiments augmenterait fortement l’estimation des coûts énergétiques.

Il est possible de synthétiser les principales propriétés comme suit :

x Mainten. Coût annuel de l’énergie therm. Coût annuel de l’énergie électr. Total Amortis. de l’investis. sur 10 ans Total
[€/m²] [€/m²] [€/m²] [€/m²] [€/m²] [€/m²]
A vapeur électrique 0,75 1 1,75 0,35 21
A vapeur thermique 0,05 0,25…0,35 0,35…0,4 6,5 6,83…6,9
Chaudière électrique à vapeur 0,1 1 1,1 5 6,1
x Frais de mainten. Frais d’
exploit.
Frais d’ Investis. Encombr. Adaptab. Utilisation recom. pour un débit d’air en m³/h
A vapeur électrique Faible Elevé Faible Faible Très bonne < 3 000
A vapeur thermique Moyen Faible Elevé Elevé > 10 000
Chaudière électrique à vapeur Elevé Elevé Elevé Elevé > 10 000

Maintenance

Les humidificateurs à vapeur doivent être périodiquement vidangés et régulièrement détartrés.

Pour les appareils autonomes à électrodes, le remplacement des électrodes est nécessaire après un temps de fonctionnement variant entre 800 et 5 000 heures, selon le degré de dureté de l’eau.

On surveillera tout particulièrement l’humidification éventuelle des parois internes du conduit aéraulique et des grilles de diffusion de l’air. Un antibiogramme des moisissures à ces endroits est recommandé périodiquement.


Régulation

Différents systèmes permettent à l’humidificateur de moduler le débit entre 0 et 100 %.

Pour les installations de conditionnement d’air :

La régulation est basée sur le schéma suivant :

En fonction de l’écart entre l’humidité relative mesurée sur l’air extrait et la valeur de consigne réglable sur le régulateur, il y a action sur l’humidificateur. Un limiteur maximal d’humidité relative de l’air soufflé limite le débit de vapeur pulvérisé. Une sonde de sécurité (en option) commande directement l’arrêt de l’humidificateur.

C’est le même régulateur qui agit en cascade sur la batterie froide, pour la déshumidification éventuelle.

Ce système doit être complété par deux dispositifs de sécurité qui interdisent la pulvérisation de vapeur lors de l’arrêt du ventilateur

  • Le verrouillage électrique entre l’humidificateur et le ventilateur.
  • Un pressiomètre qui vérifie le fonctionnement effectif par la mise en pression de la gaine (si la courroie du ventilateur casse, le ventilateur est électriquement en fonctionnement…).

Il sera utile de définir le niveau d’humidification : du “tout centralisé” au départ des circuits si besoins homogènes, vers le “tout décentralisé”, chaque local ayant des besoins différents. Les appareils électriques autonomes offrent beaucoup de liberté à ce sujet.

Pour les humidificateurs d’ambiance directe :

On utilise généralement des humidificateurs par action tout ou rien, l’hygrostat enclenchant l’appareil lors du dépassement d’un seuil réglable. Un hygrostat supplémentaire de sécurité est également prévu pour limiter le risque en cas de panne du premier régulateur.


Prédimensionnement

Améliorer

Le prédimensionnement du débit d’eau d’humidification nécessaire peut être réalisé sur base du débit d’air à traiter et de son degré d’humidité initial et final.

L’estimation de la portée du jet de vapeur est également possible.

Ensuite, pour les appareils électriques, la puissance appelée est de 750 Watts par kg/h de débit de vapeur souhaité, environ.

Améliorer

Il est également possible d’estimer le débit d’eau de déconcentration afin de limiter cette consommation d’eau parasite.