Aérodynamique des éoliennes

Il s’agit d’une page qui peut s’avérer assez technique pour les personnes qui n’ont pas de base en physique ou en ingénierie. Néanmoins, cette page n’est pas absolument nécessaire à une compréhension d’ensemble du fonctionnement d’une éolienne. En effet, en pratique, il n’est pas obligatoire de comprendre les phénomènes physiques exacts qui rentrent en jeu, à partir du moment où l’on sait ce que l’on peut récupérer comme puissance et énergie électrique de la part de son éolienne. Néanmoins, afin d’être complet et de permettre aux personnes intéressées d’avoir une vue plus pointue ou complète, les bases de l’aérodynamique des éoliennes sont introduites ci-dessous.

La portance et la trainée

Pour comprendre le mode de fonctionnement d’une éolienne, il faut introduire quelques concepts d’aérodynamique. Parmi ceux-ci, les notions de trainée et de portance jouent un rôle majeur. Pour commencer, on simplifie le problème. En effet, lorsque l’on regarde une aile, qu’il s’agisse d’une aile d’avion ou d’éolienne, il s’agit d’un corps à 3 dimensions spatiales. En effet, une aile possède une certaine longueur de corde (direction “x”), une certaine cambrure (direction “y”) ainsi qu’une certaine envergure (direction “z”). De manière générale, il est assez difficile de considérer ces trois dimensions simultanément. On prend uniquement les deux dimensions (2-D) qui contiennent le phénomène physique dominant. Il s’agit de la dimension de la cambrure et de la corde. Ensuite, les aérodynamiciens intégreront la troisième dimension, c’est-à-dire l’envergure, comme étant une superposition de comportements en deux dimensions (2D) le long de l’envergure.

   

À droite, illustration du concept d’aile en trois dimensions avec une cambrure (direction”y”), une envergure L (direction “z”) et une corde (direction “x”).  Le profil d’aile (surface grisée) est obtenu en “découpant” une section de l’aile en un point le long de l’envergure. À droite, vue de profil d’une pale d’éolienne qui donne un bon aperçu d’un profil d’aile. Ici, il s’agit du profil en bout d’aile.

On analyse donc les phénomènes physiques au moyen de profils 2D d’aile. Ce profil est constitué, d’une part, d’un bord d’attaque et d’un bord de fuite, et d’autre part, d’une corde qui relie ces deux extrémités (voir figures ci-dessous). Dans le cas d’une aile complète en trois dimensions, la corde, c, varie généralement en fonction de la position de long de l’envergure. En outre, la forme du profil peut varier avec cette distance. C’est souvent le cas pour les grandes éoliennes dans la mesure où la vitesse du rotor près du moyeu est nettement plus faible qu’en bout de pale. Il n’est pas nécessaire de tenir compte de cette propriété pour comprendre le principe de fonctionnement d’une éolienne voire d’un avion.

Notre profil d’aile est placé dans un écoulement, par exemple, on place le profil au centre d’une soufflerie. L’air présente une certaine vitesse, V, mesurée loin devant le bord d’attaque. En effet, les vitesses que prend l’air autour d’une éolienne sont toujours inférieures à la vitesse du son. On dit qu’elles sont subsoniques. Dans ce cas, les informations peuvent remonter le courant parce qu’elles se propagent plus vite. En fait, l’information se déplace sous forme d’ondes de pression qui ont cette vitesse du son. Du coup, si l’écoulement est subsonique, l’information peut atteindre toutes les directions de l’espace. En pratique, qu’est-ce que cela veut bien dire ? Et bien tout simplement que l’air est déjà perturbé par la présence d’un avion ou d’une éolienne avant même de l’avoir touché. Autre exemple, lorsque vous soufflez sur votre doigt, l’air est perturbé par la présence de votre doigt avant même de l’atteindre. Cela se traduit par des trajectoires courbes des filets de courant (en gros, il s’agit de la trajectoire du fluide). On voit clairement dans les figures suivantes qu’ils sont déviés bien avant d’avoir atteint le bord d’attaque. Par conséquent pour avoir une bonne idée de la vitesse à laquelle on soumet notre profil, il faut le mesurer bien loin devant le bord d’attaque, suffisamment loin pour qu’il ne soit pas perturbé par la présence du profil. Dans le jargon de l’aérodynamique, on parle de vitesse infini amont.

   

Retournons à notre profil d’aile placé dans une soufflerie. De manière générale, la corde présente un certain angle avec la vitesse de l’air en amont, V. Cet angle s’appelle l’angle d’attaque (AOA pour “angle of attack”). Plus cet angle est important, plus les filets d’air sont déviés par le profil. En d’autres termes, la présence de l’aile réorganise localement l’écoulement de l’air (autour du profil). La partie du profil entre le bord d’attaque et de fuite orientée vers le haut est appelée, extrados, tandis que l’autre moitié orientée vers le bas est appelée, intrados. Du côté de l’extrados, l’aile a fait accélérer l’écoulement. Par contre, elle a ralenti l’écoulement côté intrados. La physique nous apprend qu’une telle accélération est accompagnée d’une diminution de pression alors que la décélération engendre une augmentation de la pression. Comme la pression est différente au-dessus et en dessous de l’aile, les forces de pression sur l’aile ne sont pas identiques au-dessus et en dessous. Il en résulte une force globalement orientée vers le haut. C’est cette force qui permet aux oiseaux ou aux avions de voler. Elle est d’autant plus importante que l’angle entre l’axe du profil, c’est-à-dire la corde, et la vitesse de l’air amont, V, est important, ou dit plus brièvement, plus l’angle d’attaque est important. Il y a une limite à ce raisonnement que nous introduirons plus tard (notion de décrochage).

La force sur l’aile peut, comme toute force, se décomposer en plusieurs composantes. Dans notre cas, on considère la composante dans la direction de l’écoulement, la force de trainée (D comme “drag”), et la force dans la direction perpendiculaire à l’écoulement, la force de portance (L comme “lift”).

Illustration des concepts dans le cas d’un avion volant horizontalement à vitesse constante.

Pour illustrer l’ensemble de ces considérations, voyons ce que cela donne dans le cas d’un avion. Supposons qu’il vole en ligne droite à une certaine vitesse constante, V, dans une direction que l’on prend dans un plan horizontal. En fait, supposons que nous nous déplacions à la même vitesse que l’avion. Par définition, nous ne le verrions pas bouger. Par contre l’air qui était au repos avant le passage de l’avion (vu par un observateur situé au sol), acquiert une certaine vitesse, V, si on le regarde à partir de l’avion. De manière plus rigoureuse, on dira que l’on met son repère sur l’avion et que l’on regarde les vitesses relatives à la vitesse de l’avion, V.  Son aile principale présente un certain angle avec la direction de vol, l’angle d’attaque. Il s’ensuit une force de portance verticale et une force de trainée horizontale appliquée à l’aile et donc à l’avion entier. La première permet de vaincre la force de gravité due à la masse de l’avion complet tandis que la seconde freine l’avion :

  • Dans le cas d’un planeur, l’avion n’a pas de moteur. La trainée a donc tendance à ralentir l’avion. Pour pouvoir maintenir sa vitesse et donc continuer à voler dans une atmosphère au repos, il doit toujours descendre progressivement en altitude (notion de taux de chute) pour maintenir sa vitesse. Dans la réalité, on sait que les planeurs tirent profit de mouvements d’air plus globaux au niveau de l’atmosphère. Ces mouvements naturels peuvent générer des vents ascensionnels qui permettent au planeur de prendre de l’altitude. Néanmoins, un planeur aura toujours intérêt à avoir une trainée la plus faible possible. Cette conclusion nous permettra de rebondir plus loin lors de nos explications sur les éoliennes.
  • Dans le cas d’un avion motorisé. La vitesse est maintenue constante grâce à l’action des moteurs. Ils exercent une force de poussée (T comme “thrust”) qui s’oppose à la trainée.

Le décrochage

Dans la section précédente, on a mis en évidence le phénomène physique qui générait la portance et la trainée d’un profil d’aile. On a aussi indiqué que cette force augmentait avec l’angle d’attaque du profil. Comme introduit précédemment, il y a une limite à cette croissance. Nous expliquons maintenant ce phénomène bien connu de décrochage (ou “stall” en anglais).

Courbe de portance en fonction de l’angle d’attaque pour un profil NACA.

Sur base de la courbe ci-dessus qui reprend l’évolution de la portance en fonction de l’angle d’attaque, on voit que cette force augmente progressivement jusqu’à un certain angle au-delà duquel la portance chute brusquement. Ce phénomène est appelé décrochage et l’angle à partir duquel il intervient, l’angle de décrochage. On voit qu’une fois l’angle de décrochage dépassé, les performances aérodynamiques du profil sont nettement dégradées. On imagine assez facilement ce que cela peut engendrer dans le cas d’un avion : une perte de portance brusque risque simplement d’engendrer une chute de l’appareil. A priori, on pourrait croire qu’il est assez farfelu d’introduire un tel phénomène dans le cas des éoliennes, mais comme cela sera expliqué, dans ce domaine d’application, le décrochage est parfois mis à profit pour contrôler la vitesse de rotor.

Explication du phénomène de décrochage

Le lecteur curieux aura peut-être envie d’en savoir un peu plus sur le principe du décrochage. Un élément de réponse simple est donné ci-dessous. Il n’a pas vocation d’être complet ou particulièrement rigoureux. Il cherche plutôt à démystifier le phénomène. Dans le cas d’un profil à angle d’attaque inférieur à la limite de décrochage, les trajectoires du fluide, à savoir l’air, sont infléchies par la présence du profil. Comme expliqué précédemment, on a une accélération côté extrados et une décélération côté intrados, accompagnée d’une diminution et une augmentation de pression, respectivement. Cette différence de pression sur les deux faces du profil est la base de la génération de portance.

   

Différence de la nature de l’écoulement entre un écoulement attaché et décroché.

Lorsque le profil décroche, les angles d’attaques sont trop importants et le fluide ne parvient plus prendre les trajectoires imposées par le profil (fortement incliné). Les trajectoires de fluides ont tendance à rester plus proches de leur situation initiale (avant que l’aile ne passe). Comme il y a moins de déformation de trajectoire, il y a moins d’accélération du fluide côté extrados du profil. Du coup, la dépression est moins importante et, sans surprise, la portance devient moins importante.

Pour augmenter l’angle d’attaque admissible avant de décrocher l’écoulement d’air, un dispositif aérodynamique, un générateur de vortex, peut être installé sur les ailes. Sans entrer dans les détails, ces petits appendices vont permettre de créer des tourbillons contrôlés de manière volontaire. Cette dynamique va plaquer le flux d’air contre la surface de l’aile permettant ainsi d’augmenter l’angle d’attaque admissible avant que la pale ne décroche.


Les forces aérodynamiques sur le rotor d’une éolienne

La première section nous a permis d’introduire les notions nécessaires pour comprendre les phénomènes physiques majeurs qui s’appliquent sur le rotor d’une éolienne. On a introduit la notion de profil d’aile, de corde, d’angle d’incidence ainsi que de trainée et de portance. Lorsque l’on considère une éolienne, le problème se complexifie un peu. En effet, il faut considérer en plus la vitesse de rotation des pales qui, en pratique, est de loin plus élevée comparée à la vitesse du vent. Dans la suite, on fait l’hypothèse d’une éolienne à axe horizontal.

            

Vitesses et forces exercées sur un profil d’une éolienne. On introduit l’angle d’incidence (alpha), de calage (beta) ainsi que la vitesse relative Va dans la figure de gauche. La résultante des forces engendrée par la vitesse du vent et la rotation de l’éolienne est illustrée dans la figure de droite.

Influence de la vitesse de rotation sur l’angle d’attaque et l’intensité de la vitesse

Considérons un profil d’une pale de notre éolienne obtenu en “coupant” l’aile à une certaine hauteur, r, comprise entre le moyeu et l’extrémité de la pale. Vu du haut, cela donne approximativement la figure ci-dessus (à gauche) où la grande flèche noire indique le sens de rotation.  Si l’éolienne a une vitesse de rotation de n (Hz ou tours/seconde), alors à la hauteur du profil, la vitesse tangentielle de la pale induite par la rotation, U, est de

U = n.(2*pi*r) en [m/s],

toujours dans le sens de rotation. On voit clairement que la vitesse augmente proportionnellement avec la hauteur le long de la pale. La vitesse tangentielle maximale sera obtenue en bout d’aile. En plus de la vitesse de rotation, on a toujours la vitesse du vent, V, mesurée loin en amont de l’éolienne. Comme expliqué précédemment, l’écoulement est déjà influencé par la présence de l’éolienne avant d’arriver au niveau du rotor si bien qu’il est partiellement freiné avant d’atteindre celui-ci. En pratique, la vitesse aura idéalement diminué d’un tiers si bien qu’on se retrouvera avec 2/3 de V dans la direction perpendiculaire au plan de rotation, la direction axiale. Comme on l’a fait ci-dessus en considérant un avion, on place notre repère de vitesse sur le profil d’aile. Il faut alors combiner la vitesse de rotation de l’éolienne, U, à cette hauteur, à la vitesse 2/3 V du vent pour obtenir la vitesse du vent relative rencontrée par le profil de l’éolienne, Va. C’est cette vitesse qu’il faut connaître pour pouvoir estimer la force qui sera exercée sur le profil de la pale. En effet, on connaît maintenant la vitesse de l’écoulement (la norme du vecteur Va) mais aussi son angle d’attaque. Comme on l’a introduit ci-dessus, il ne suffit pas de connaître la vitesse du vent, V. La vitesse tangentielle, U, induite par la rotation influence significativement l’écoulement qui sera reçu par le profil.

On introduit un nouvel angle de première importance, l’angle de calage (“pitch angle” en anglais). Il se définit comme étant l’angle entre le plan de rotation et la corde du profil. Contrairement à l’angle d’attaque, il ne dépend pas de conditions de l’écoulement. Il s’agit d’un paramètre géométrique que l’on peut adapter. En effet, l’angle d’attaque dépend des conditions de fonctionnement. Dans le cas de notre éolienne, il dépend de la vitesse du vent, de la vitesse de rotation ainsi que de l’orientation de la corde du profil (autrement dit de l’angle de calage).

Représentation schématique de la variation de l’angle de calage des pales d’une éolienne.

On peut faire varier l’angle de calage en faisant tourner la pale autour de son axe, tel qu’illustré dans la figure ci-dessus. On voit qu’en modifiant cet angle, on modifie l’angle d’attaque et par conséquent la force qui sera exercée sur le rotor. Le pivotement des pales peut être réalisé par des actionneurs électromécaniques ou par un système hydraulique.

Vrillage de l’aile

Comme la vitesse relative, Vr, augmente avec la hauteur de long de la pale, la géométrie de celle-ci est adaptée à cette augmentation de vitesse. On voit notamment la diminution de l’angle de calage avec la hauteur pour garder l’angle d’attaque comparable tout le long de la pale. C’est cette variation qui donne un aspect vrillé à la pale.

Diminution de l’angle de calage avec la hauteur le long de la pale : effet de vrillage. On voit que Vr augmente entre le pied et la tête de la pale. Pour maintenir un angle d’attaque, alpha, constant, l’angle de calage, Theta, est modifié.

Caractéristiques de la force exercée sur le profil d’une éolienne

On voit, dans la deuxième figure sur la décomposition des forces (placée un peu plus haut), que la vitesse relative caractérisée par une certaine intensité et une direction décrite par l’angle d’attaque, induit une force sur le profil. Cette force F, se décompose en une composante tangentielle, FT qui contribue positivement à la rotation de l’éolienne, c’est l’effet utile recherché (du moins pour toutes éoliennes basées sur la portance), et une composante axiale FN perpendiculaire au plan de rotation qui n’a aucun effet utile. Au contraire, cette force axiale soumet l’éolienne par sa poussée à une contrainte mécanique importante. C’est l’élément dominant lors du dimensionnement du mât d’une éolienne. Si on décompose la force aérodynamique selon sa composante de portance et de trainée, on en déduit les propriétés suivantes :

  • La portance L, contribue positivement à la rotation de l’éolienne. En d’autres termes, elle induit une force dans le sens de rotation, c’est l’effet utile recherché. C’est aussi pourquoi on dit que ces éoliennes sont basées sur la portance.
  • La trainée, D, contribue négativement à la rotation de l’éolienne. En d’autres termes, elle induit une force dans le mauvais sens, c’est un effet parasite. Elle diminue le rendement de conversion de l’énergie cinétique du vent en énergie mécanique sur le rotor. C’est pourquoi, tout comme un planeur, les pales d’une éolienne sont conçues pour minimiser la trainée et obtenir ainsi les meilleurs rendements.

Le réglage de la puissance : calage et décrochage

Pour faire fonctionner une éolienne correctement, on doit pouvoir jouer sur les paramètres aérodynamiques des pales pour contrôler la vitesse de rotation ainsi que la puissance soutirée au vent :

  • Dans le cas de vents importants, le rotor peut être soumis à des forces mécaniques qui peuvent dépasser les contraintes admissibles. En outre, la puissance fournie par le rotor est limitée par la puissance maximale de la génératrice.
  • Dans le cas de fonctionnement normal, on doit pouvoir fonctionner à la vitesse de rotation souhaitée ou du moins, prédéfinie.

Il y a deux grandes manières de faire varier, et donc de contrôler, la force aérodynamique sur le rotor d’une éolienne : changer l’angle d’attaque et diminuer la surface au vent balayée par l’éolienne. La deuxième solution s’obtient en décalant le rotor (“yawing” en anglais) par rapport à la direction du vent (selon un axe vertical pour un décalage gauche-droite, ou selon un axe horizontal pour mettre incliner le rotor vers l’horizontal). On s’attardera ici sur la première solution basée sur l’angle d’attaque.

Modification de l’angle d’attaque via l’angle de calage d’une pale

La manière la plus efficace de modifier l’angle d’attaque est de jouer sur l’angle de calage.  Celui-ci peut être modifié en faisant pivoter la pale le long de son axe. Pour contrôler la force appliquée, on peut procéder de deux manières distinctes :

  • On peut augmenter l’angle de calage pour diminuer la puissance ou le réduire pour augmenter cette puissance (“pitch control” en anglais). A la limite si l’on souhaite réduire au maximum les forces exercées sur les pales pour garantir leur intégrité, notamment en présence de grands vents, on peut les placer en drapeau par rapport à la direction du vent (“feathering” en anglais).
  • Une autre manière de limiter la puissance est de dépasser rapidement l’angle de décrochage ce qui induit une diminution significative de la portance (“stall control” en anglais). Hormis pour certaines réalisations, cette seconde méthode est moins efficace que la première. Elle serait apparemment moins précise et les forces appliquées aux pales seraient plus intermittentes (dû au caractère fortement instationnaire du phénomène de décrochage).

Illustration de la variation de la force aérodynamique : diminution par réduction de l’angle de calage (centre) ou par décrochage (droite).


La trainée induite : aile d’envergure finie

Dans les développements précédents, on a essentiellement considéré les phénomènes physiques sur base de profils d’aile. En d’autres termes, on a tenu compte de deux dimensions de l’espace, c’est-à-dire la direction axiale (sens de l’écoulement pour une éolienne à axe horizontal) et tangentielle (plan de rotation). D’un point de vue purement théorique, c’est équivalent à considérer une aile infiniment longue. Pas simple de convaincre le lecteur de cette assertion, mais cela semblera sans doute plus clair par la suite. En réalité, tout le monde sait qu’une aile, que ce soit d’avion ou une pale d’éolienne, n’est pas infiniment grande. Elle a en effet une certaine envergure. Cela peut sembler trivial, mais, comme on va l’expliquer, cette limite va nous obliger à tenir compte de la troisième dimension spatiale dans notre raisonnement. Il s’agit de la direction radiale pour une éolienne à axe horizontal.

Photographie d’un tourbillon de sillage induit par un avion.

Tourbillons de bout d’aile : l’origine du phénomène

Comme on l’a expliqué précédemment en introduisant le phénomène de portance, une aile présente une certaine surpression à l’intrados et dépression à l’extrados. Que se passe-t-il en bout d’aile ? En bout d’aile, on a une région de haute pression (dans le cas d’un avion, en bas) et de basse pression (dans le cas d’un avion, en haut) qui sont voisines et non séparées par l’aile. En conséquence, l’air va se déplacer de la zone haute pression vers la zone basse pression dans un mouvement de contournement du bout d’aile. L’air se met donc globalement en rotation. Il crée un mouvement “cohérent” de rotation que l’on appelle “tourbillon”. Comme, il y a deux extrémités à une aile, on trouve deux tourbillons. Ceux-ci tournent en sens opposés l’un par rapport à l’autre.  Ce phénomène de tourbillon est clairement visible sur la photographie ci-dessus où l’on voit que l’air est mis en rotation au niveau des bouts d’aile après le passage de l’avion. Ce comportement n’a lieu que si l’aile a une certaine envergure. Si elle avait été infiniment grande, on n’aurait pas rencontré ce phénomène. Cela explique la distinction que nous avons introduite en début de section.

Ce phénomène de tourbillon est clairement visible au passage d’un avion à réaction dans un ciel bleu. En effet, la combustion qui a lieu dans un moteur d’avion rejette principalement de l’eau sous forme de vapeur et du CO2. Comme les avions volent à relativement haute altitude, la température de l’air à cette hauteur est largement négative (en °C). Du coup, l’eau qui est éjectée par les moteurs à l’état de vapeur se condense pour former de fins cristaux de glace. C’est la trainée blanche que l’on voit derrière un avion. En effet, l’eau à l’état de vapeur n’est pas visible. Par contre, une fois condensée, elle interagit avec la lumière. Revenons à nos moutons en ce qui concerne les deux tourbillons de bout d’aile. L’eau rejetée par les moteurs est capturée par les deux tourbillons de bout d’aile (phénomène dit d’ “enroulement”). Par conséquent, cela rend ces deux tourbillons visibles (parce que l’eau dans un état visible est capturée par les tourbillons). Ce sont les deux longues trainées blanches que vous voyez par ciel bleu derrière un avion de ligne. Vous remarquerez que, même si l’avion à quatre moteurs, in fine, il reste toujours deux trainées. Cela montre bien que les deux tourbillons capturent le “panache” des moteurs.

On peut se rendre compte que le même phénomène a bien lieu dans le cas d’éolienne. La figure suivante montre l’émission d’un tourbillon en bout de pale qui est translaté en aval par le vent.

 

Visualisation par dégagement d’un traceur (fumée) du sillage d’une éolienne expérimentale bi-pale.

Tourbillons de bout d’aile : augmentation de la trainée

Le phénomène de tourbillon de bout d’aile génère quelques problèmes. Nous retiendrons uniquement ici la contribution à la trainée. En effet, les tourbillons génèrent un mouvement de l’air global vers le bas juste en aval de l’aile. Ce mouvement induit par les tourbillons modifie les angles d’attaque des ailes si bien que la force est décalée vers l’arrière, augmentant ainsi la trainée. La contribution de la trainée induite est non négligeable, surtout à basse vitesse (ce qui est le cas des éoliennes). Du coup, il faut chercher à minimiser ces tourbillons de bout d’aile.

Vue de la composante verticale du champ de vitesse derrière un avion.

Retenons simplement que la forme de l’aile à une importance majeure. Un paramètre de première importance est l’allongement relatif qui est le rapport entre l’envergure et la corde moyenne d’une aile (ou d’une pale). Plus ce rapport est grand et plus la trainée induite est faible. C’est typiquement la raison pour laquelle les planeurs ont de grandes ailes allongées. En effet, ils n’ont pas de moteur si bien qu’ils sont conçus pour minimiser la trainée. En outre, ils volent à basse vitesse si bien que la trainée induite est non négligeable. En ce qui nous concerne, c’est une des raisons qui permettent d’expliquer pourquoi les éoliennes ont des pales si allongées.

 photo avion.     Photo éolienne.

Pour réduire la traînée induite par les tourbillons de bout d’ailes, le monde éolien s’est inspiré de l’aéronautique. Le monde de l’aviation et aujourd’hui celui de l’éolien utilisent un dispositif biomimétique : le winglet, sorte de petite cassure perpendiculaire située en bout de pale qui permet d’augmenter l’allongement effectif de l’aile et ainsi de réduire la traînée induite par les vortex de bout de pale.

Schéma principe du winglet.Photo de winglet.