Modulation de puissance

Une modulation de charge du cogénérateur entre 100 et 50 % est techniquement possible, mais le coût de l’entretien du groupe dépend principalement de son temps de fonctionnement et ce coût d’entretien entraîne une augmentation relative du prix du kWh lorsque la charge diminue. Combinée à une légère chute du rendement à charge réduite, il est généralement préconisé d’éviter de fonctionner à moins de 70 % de charge, sauf pour un nombre de cas très limités.

Il est encore très important de veiller à une parfaite coordination des régulations des différents éléments de chauffage, avec un intérêt certain pour l’exploitant de la cogénération de gérer toutes les installations thermiques et électriques, afin d’éviter des interfaces parfois délicates.


Contraintes thermiques sur la régulation

Intégration dans la cascade de chaudières

Une régulation de cascade doit être mise en place sachant qu’il faut pouvoir gérer la “libération” des différents équipements de production de chaleur en fonction des besoins, et ce au bon moment. On tiendra à l’esprit que c’est la cogénération qui doit être en tête de cascade de manière à couvrir le maximum des besoins de chaleur. La monotone de chaleur représentée ci-dessous est très didactique pour montrer l’importance de la programmation d’une cascade séquentielle pour l’ensemble des équipements de production de chaleur.

On rappelle qu’une monotone de chaleur exprime surtout une représentation des besoins de chaleur au cours de l’année. On voit tout de suite que pour rentabiliser une cogénération d’un point de vue “énergético-environnemento-financier”, on a intérêt à programmer une cascade des chaudières et du cogénérateur pour que ce dernier couvre la plage 2 de la monotone de chaleur.

Monotone de chaleur.

Monotone de chaleur.

  1. Libération d’une des chaudières à faible régime. Pour les anciennes chaudières, leur fonctionnement à faible charge entraine une dégradation du rendement non négligeable. Pour les chaudières à condensation modulantes, elles travaillent dans des bonnes conditions de rendement (optimum autour des 30 % de taux de charge).
  2. Libération du cogénérateur seul avec une modulation de puissance entre 100 et 70 %.
  3. Libération simultanée du cogénérateur et d’une des chaudières.

La plupart du temps, un besoin de chaleur au niveau secondaire se traduit par une diminution de température au niveau de la sonde de départ du primaire. Tenant compte du fait que le régulateur adapte souvent la température de consigne de départ en fonction de la température externe (fonctionnement en température glissante), la comparaison entre la température du départ et sa consigne glissante doit permettre de libérer les différents équipements de production suivant une séquence dans la cascade bien définie comme le représente la figure suivante :

Séquence de cascade.

Interactions hydrauliques avec les chaudières

Compte tenu de notre climat, la régulation en mi-saison est la plus complexe. Le besoin en chaleur oscille pendant ces périodes à des valeurs qui ne sont ni hautes pour permettre un fonctionnement à 100 % de charge, ni basses et qui imposeraient un arrêt. Ces besoins imposent une modulation plus fréquente qu’en été ou en hiver. Notons que cela ne s’applique pas à des cogénérations qui produisent de la chaleur en continu pour un processus industriel.

Dans ce cas, de nombreux arrêts peuvent être dus à des arrêts de process du client. Le prescripteur doit alors aborder le process dans son ensemble pour définir le cahier des charges de la conduite.

Il existe des petites installations plus ou moins “sous-dimensionnées” par rapport à la monotone de chaleur. Ils garantissent un fonctionnement 24 h/24 et sans stockage.

Dans le cas du secteur tertiaire, la production thermique du cogénérateur sera raccordée à l’installation de chauffage (et/ou de production d’eau chaude sanitaire). Comme la demande de chaleur du bâtiment, dépendante de la température extérieure, est variable dans le temps, une régulation adaptée est alors exigée.

Le réglage de l’installation consiste à définir le point de commutation entre les chaudières et la cogénération et à régler les temporisations sur les variations de puissance en fonction de l’inertie thermique de tout le système, qui n’est pas bien connue à priori. Idéalement c’est le profil de demande de chaleur qui permet d’affiner le réglage du cogénérateur.

Le risque majeur à éviter dans la combinaison chauffage-cogénération est une température d’eau de retour trop élevée vers le moteur. Une température trop élevée peut entraîner une instabilité de l’enclenchement / déclenchement du moteur. On peut résumer le problème de la façon suivante :

Le cogénérateur fournit assez de puissance pour couvrir la demande de chaleur. Mais la température de départ primaire chute. Le régulateur de chaufferie libère la chaudière (démarrage).

La chaudière se met en fonctionnement. Elle délivre très rapidement suffisamment de chaleur pour que les vannes 3 voies des circuits secondaires se ferment. La température de retour monte et réchauffe le ballon tampon.

Le cogénérateur et la chaudière s’arrêtent.

Après refroidissement du ballon tampon, le moteur redémarre. La cogénération ne parvient pas suffisamment vite à répondre à la demande de chaleur et la chaudière redémarre.
Ainsi de suite …

En pratique, on peut travailler par essais/erreurs pour ajuster le point de commutation et les temporisations. On peut également adapter le réglage en fonction des performances mesurées du moteur par comptage de sa consommation et de sa production et essayer de maintenir un rendement optimum.

Un suivi des performances du moteur permettra de se rendre compte qu’il ne faut sûrement pas essayer de faire fonctionner le moteur le plus longtemps possible. Il est plus intéressant d’adapter son fonctionnement à la demande de chaleur plutôt que de suivre à tout prix la demande électrique.

Pratiquement la permutation entre le fonctionnement du cogénérateur et celui des chaudières peut se faire en fonction de la température extérieure.

Interaction  avec les courbes de chauffe des chaudières

Sauf si vous avez hérité d’une installation “d’un autre âge”, en général, quel que soit le type de chaudière, une régulation de chaudière classique comprend au minimum un mode de régulation “en température glissante” par rapport à la température externe. Sans rentrer dans les détails, la température de l’eau chaude de chauffage est adaptée aux conditions climatiques externes. Ce mode de régulation est très intéressant surtout pour les chaudières à condensation, car il permet de valoriser la chaleur de condensation en faisant travailler les chaudières à basse température. Pour les autres types de chaudière, cette régulation permet de limiter les pertes thermiques qui sont générées lorsque les températures d’eau chaude sont élevées.

L’intégration d’une installation de cogénération dans une chaufferie constitue une modification assez importante de la régulation pour les raisons évidentes suivantes :

  • Avec une seule chaudière existante, pour pouvoir placer le cogénérateur en tête de séquence, une régulation en cascade doit être programmée. Le régulateur de la chaudière est-il suffisamment évolué pour pouvoir intégrer cette cascade ? De manière générale, pour les chaudières d’une dizaine d’années, c’est faisable. Pour les chaudières de génération précédente, c’est du cas par cas.
  • Avec plusieurs chaudières, la cascade existante doit inclure le cogénérateur au même titre qu’une chaudière supplémentaire. Les régulateurs d’un ensemble de chaudières sont généralement prévus pour ajouter un équipement supplémentaire.

Donc, le régulateur d’une chaufferie (une ou plusieurs chaudières) doit au minimum “chapeauter” le régulateur de l’installation de cogénération, ne fusse que dans la séquence de cascade de libération du cogénérateur ET des chaudières. En effet, quelle que soit la configuration hydraulique, la difficulté d’intégration du cogénérateur est de concilier la ou les chaudières régulées par des courbes de chauffe, et donc des températures de consigne variables, avec un équipement de cogénération qui travaille avec une température de consigne constante. On constate dans certaines chaufferies les phénomènes suivants :

  • En période froide, la consigne de température de départ appliquée par le régulateur aux chaudières est élevée (par exemple 80 °C par -10 °C de température externe). Les consignes de température de démarrage des chaudières sont, par exemple, respectivement de 75 et 70 °C pour les chaudières “maître” et “esclave”. Par contre, la température de consigne de démarrage du cogénérateur est de l’ordre de 60 °C en fixe. Cette valeur de 60°C pour le démarrage est conditionnée par les caractéristiques intrinsèques du cogénérateur. En effet, elle pourrait être plus élevée, mais sachant que la température de retour au cogénérateur est maximum de l’ordre de 70 – 75 °C, une valeur de consigne de démarrage du cogénérateur de 70 °C entrainerait des cycles très courts marche/arrêt du cogénérateur et ne permettrait de toute façon pas un passage en tête de séquence de cascade (la consigne de démarrage en tête de séquence dans ce cas-ci est de 75 °C).
  • En mi-saison, lorsque les courbes de chauffe de régulation des chaudières définissent une consigne de température de départ primaire sous la consigne de température fixe du cogénérateur, soit dans l’exemple de 60 °C, la cogénération va naturellement se placer en tête de cascade et démarrera avant les chaudières. C’est une bonne nouvelle, mais qui arrive un peu tard, comme les “carabiniers d’Offenbach”, vu que les besoins de chaleur deviennent faibles. Il en résulte que le cogénérateur risque d’avoir des cycles marche/arrêt courts, ce qui n’est pas idéal.

Régulation des chaudières et du cogénérateur.

Régulation des chaudières et du cogénérateur.


Contraintes mécaniques sur la régulation

Des démarrages et des modulations de puissance trop fréquents et trop forts, comme c’est souvent le cas en mi-saison par exemple, entraînent une fatigue mécanique importante du moteur, ce qui augmente considérablement les risques de panne. Il est donc conseillé de réaliser des montées en puissance “douces” et des démarrages en nombre relativement réduit, typiquement limités à 2 ou 3 par jour. La priorité est à la cogénération, la modulation reste à la chaudière.

Dans le même ordre d’idée, puisqu’une cogénération ne peut pas moduler comme une chaudière (fréquence et intensité des modulations), il est essentiel de bien connaître son profil de consommation de chaleur pour ne démarrer la cogénération que pour des périodes suffisamment longues.

Le fonctionnement correct du moteur demande encore un préchauffage constant pendant les heures de démarrage potentiel, afin d’éviter un démarrage à froid et les contraintes thermiques très nocives que cela entraîne.

Comme pour tout moteur, il est également conseillé de le faire tourner fréquemment afin d’en garantir le bon fonctionnement au moment voulu.


Contraintes électriques sur la régulation

Lorsque le groupe de cogénération est prévu pour fonctionner en groupe secours (ce qui n’est pas idéal), il est nécessaire de gérer la charge électrique du client pour ne pas imposer de variation de charge trop importante au moteur qui risquerait de s’étouffer.

Par exemple, en cas de coupure du réseau, il peut être nécessaire de délester les charges électriques, connecter la cogénération comme approvisionnement en électricité puis relester progressivement les charges en commençant par les plus importantes. Le groupe ne saurait effectivement pas alimenter instantanément l’ensemble des charges.

Pour un fonctionnement en groupe de secours toujours, la législation impose dans certains cas comme les hôpitaux, des délais pour l’apport du courant par les groupes secours. Le groupe de cogénération doit être capable de répondre à ces exigences.

Le module sur la cogénération à été réalisé par l’ICEDD, Institut de Conseil et d’Etudes en Développement Durable asbl – © ICEDD – icedd@icedd.be