Connaître les détails techniques du mur creux


3 Principes de base

Remarque : il n’est pas possible de donner une liste exhaustive de tous les détails techniques corrects que l’on peut rencontrer dans les murs creux. Aussi, nous avons préféré expliquer les différentes fonctions à assurer au niveau thermique et montrer la façon d’y arriver dans quelques cas précis de manière à avoir « les outils » pour pouvoir évaluer l’efficacité de tout autre détail de conception.

Afin d’assurer confort et efficacité énergétique, le mur creux doit assurer 3 fonctions de base :

l’étanchéité à l’eau,
l’isolation,
l’étanchéité à l’air.

Ces fonctions doivent être assurées de manière continue. Pour ce faire, elles doivent l’être :

  • aussi bien au niveau des parties courantes des murs,
  • qu’au niveau des différents points particuliers c.-à-d. au niveau des différentes jonctions (avec un châssis, avec la fondation, avec un plancher, avec une terrasse, avec la toiture, etc.) (= « détails techniques« ).

L’étanchéité à l’eau

(contre les infiltrations d’eau de pluie, l’humidité ascensionnelle, les eaux de nettoyages, ….)

> Parties courantes : le principe même du mur creux permet d’assurer une bonne étanchéité à l’eau de pluie.
> Chaque interruption de la coulisse doit être drainée par une membrane d’étanchéité placée en escalier vers l’extérieur et des joints verticaux laissés ouverts de manière à rejeter l’eau qui a pénétré dans la coulisse.
> A chaque ouverture dans le mur (fenêtres, …), il faut veiller à ce que l’eau soit rejetée vers l’extérieur et ne puisse pénétrer à l’intérieur.
> Les matériaux doivent être protégés de l’humidité ascensionnelle, des eaux de nettoyage ou de toute autre source d’eau.

 L’isolation

> Dans les parties courantes du mur creux, l’isolation doit être continue dans la coulisse.

Une discontinuité dans l’isolation des parties courantes engendre des pertes de chaleur supplémentaires de deux types :

  • des pertes par convection  par circulation d’air autour des panneaux (principalement pour les murs à remplissage partiel de la coulisse). Un espace de 5 mm suffit pour provoquer une rotation spontanée de l’air.

Schéma isolation continue dans la coulisse.

> Au droit de chaque nœud constructif, il doit y avoir continuité de la coupure thermique. Cela suppose :

Schéma isolation et nœud constructif.

  1. soit la continuité de l’isolation (cas idéal),
  2. soit l’interposition d’un élément isolant ,
  3. soit l’équivalence de la résistance thermique par un allongement du « chemin » à faible résistance thermique.

 L’étanchéité à l’air

> Outre qu’elle diminue les déperditions thermiques, l’étanchéité à l’air est très importante car elle conditionne le bon fonctionnement de l’étanchéité à l’eau du mur creux.

Elle permet une mise en équilibre des pressions de part et d’autre de la maçonnerie de parement. En l’absence d’une barrière à l’air efficace, l’eau qui aurait traversé la maçonnerie de parement au droit d’une petite discontinuité pourrait être projetée au point d’atteindre la paroi intérieure lorsque celle-ci est exposée à des pluies accompagnées de vent.

     

Pas d’étanchéité à l’air côté intérieur.   Étanchéité à l’air côté intérieur.

Elle est assurée :

> Dans les parties courantes du mur creux, par un enduit appliqué sur le mur intérieur.
> Aux jonctions entre mur et châssis, par les joints d’étanchéité (fond de joint + mastic).

Partie courante et angle d’un mur

Schéma mur creux et étanchéité à l'eau.

L’étanchéité à l’eau

Le principe même du mur creux est d’offrir une barrière efficace à l’eau de pluie.

En effet, la lame d’air entre la maçonnerie de parement et le mur porteur intérieur constitue une interruption dans les matériaux qui permettent l’acheminement de l’eau. Elle empêche donc l’eau qui aurait pu passer au travers de la maçonnerie de parement, de continuer son chemin vers l’intérieur du bâtiment.
De plus, elle permet de récolter l’eau qui a réussi à traverser le mur de parement pour la renvoyer vers l’extérieur.

Pour que ce principe de barrière capillaire fonctionne bien, il faut cependant :

  • Que le mur intérieur soit étanche à l’air.
  • Que la coulisse (3) ait une épaisseur totale de 6 cm au moins de manière à former une véritable rupture capillaire.
    Remarquons qu’une coulisse remplie complètement d’un isolant non capillaire et hydrophobe reste une coupure capillaire.
    Dans le cas d’un mur creux isolé à remplissage partiel, la lame d’air restante doit être d’au moins 3 cm.
  • Que la coulisse soit drainée au bas du mur.
  • Que la maçonnerie de parement (1) soit, de préférence, réalisée au moyen de matériaux capillaires.
    En effet, une maçonnerie capillaire peut absorber l’eau qui a pénétré par les inévitables microfissures du parement et par les joints ainsi que l’eau qui ruisselle sur ses faces externe et interne. Ainsi des matériaux de parement capillaires engendrent des pénétrations d’eau dans la coulisse beaucoup moins rapides et abondantes que des matériaux peu capillaires.
  • Que, dans le cas d’un mur creux isolé avec remplissage intégral de la coulisse, l’isolant (4b) soit non capillaire et hydrophobe (c.-à-d. qu’il ne peut ni s’humidifier dans la masse, ni transférer l’eau qui aurait traversé la maçonnerie de parement.
  • Que les crochets (5a et 5b) soient inclinés vers l’extérieur (remplissage intégral d’isolant) ou munis de casse-gouttes (remplissage partiel d’isolant).

Précautions supplémentaires lors de l’exécution

Il ne peut pas y avoir de déchets de mortier dans la coulisse.

Les joints doivent être bien fermés, le mortier de bonne qualité.

Les joints entre les panneaux isolants doivent être fermés de manière à éviter le passage d’eau entre ceux-ci.

Dans le cas d’un remplissage partiel de la coulisse, les panneaux doivent être bien maintenus contre le mur intérieur par les rondelles de manière à empêcher tout contact entre le mur de parement et le mur intérieur càd de manière à garder efficiente la coupure capillaire que forme la coulisse.

L’isolation

  • Les panneaux isolants (4a et 4b) choisis doivent être rigides ou semi-rigides pour ne pas s’affaisser dans la coulisse.
  • Dans le cas d’un remplissage partiel de la coulisse, les rondelles doivent bloquer l’isolant contre le mur intérieur.

Précautions supplémentaires lors de l’exécution

  • Les panneaux isolants doivent être protégés et manipulés avec précaution sur chantier. Il faut éviter les écrasements, la boue, les déchirures, … afin de préserver leur structure qui est à l’origine de leur pouvoir isolant.

Schéma mur creux et isolation.

    • La surface du mur porteur doit être propre et plane de manière à assurer le contact entre mur porteur et isolant (1).
    • Les panneaux doivent être posés de manière jointive. Les joints sont, de préférence alternés. En surface on utilise des bandes adhésives pour recouvrir les joints et/ou des panneaux à emboîtement (2a). Les angles peuvent être recouverts à l’aide de bandes adhésives (2b).
    • Les crochets, qui servent, entre autres, au maintien de l’isolant contre le mur intérieur, dans le cas d’un remplissage partiel de la coulisse, doivent être en nombre suffisant : 5 par m² en surface (3a), 5 par mètre courant aux angles (3b) et 3 par mètre courant autour de la baie. Ils doivent être bien ancrés.
  • Pendant l’exécution du mur, la coulisse doit être protégé (utilisation de membranes et de voliges temporaires) contre la pluie.

L’étanchéité à l’air

L’étanchéité à l’air est assurée par un enduit (7) (plafonnage, le plus souvent) sur la face interne du mur intérieur. Celui-ci réduit fortement les infiltrations d’air dans le bâtiment.
S’il n’est pas possible d’appliquer l’enduit sur la face vue de la paroi intérieure (maçonnerie intérieure apparente), on applique un enduit de ciment du côté coulisse de ce même mur.

L’enduit est moins indispensable lorsque le creux du mur est pourvu de panneaux isolants peu perméables à l’air (tels que mousse de polyuréthane, polystyrène expansé, etc.) avec jonctions bien jointives.

Précautions supplémentaires lors de l’exécution

Les joints des maçonneries intérieures et extérieures doivent être bien fermés.


Pieds de façade

Cas d’un plancher sur terre-plein

Schéma isolation et plancher sur terre-plein.

  1. Mur de structure.
  2. Bloc isolant.
  3. Isolation sur dalle.
  4. Joints verticaux ouverts.
  5. Membrane d’étanchéité.
  6. Membrane d’étanchéité.
  7. Feuille d’étanchéité.
  8. Feuille d’étanchéité.
  9. Feuille d’étanchéité.
  10. Interruption de l’enduit.
  11. Enduit.

L’étanchéité à l’eau

  • La coulisse est interrompue au-dessus de la fondation. Il faut donc la drainer à ce niveau pour renvoyer l’eau infiltrée à l’extérieur. Ce drainage est réalisé au moyen d’une membrane d’étanchéité (5) posée « en escalier » et des joints verticaux ouverts (4) (1 joint ouvert par mètre) dans la rangée de briques de parement juste au-dessus de la membrane.
    Remarque : ces joints ne servent donc pas à uniquement à ventiler la coulisse mais aussi à la drainer.
  • La membrane (6) et la feuille d’étanchéité (7) protègent le pied du mur et la dalle sur sol contre l’humidité ascensionnelle.
  • Les feuilles d’étanchéité (8) et (9) protègent l’isolant contre les eaux de nettoyage et contre l’humidité de construction de la dalle de sol.Remarque : l’utilisation d’un soubassement est tombée en désuétude ces dernières années. Or, en plus de sa fonction architecturale, ce soubassement protégeait la maçonnerie des éclaboussures.

L’isolation

  • L’isolant sur la dalle (3) freine le transfert de chaleur par conduction vers le sol.
  • La continuité entre l’isolation du mur (1) et celle du sol est assurée par un bloc plus isolant (2) que le reste du mur (bloc de béton cellulaire ou d’argile expansée).Remarque : dans certains cas, pour des raisons de stabilité, par exemple, un bloc isolant ne peut être utilisé. Il faut alors trouver un autre moyen de neutraliser le pont thermique : on place un isolant sur le trajet de la chaleur.

       

Sans correction du pont thermique et avec correction du pont thermique.

L’étanchéité à l’air

Interruption (10) de l’enduit (11) au-dessus de la membrane d’étanchéité (5) afin que l’humidité éventuelle ne contourne celle-ci.

Précautions supplémentaires lors de l’exécution

  • Ne pas encrasser le fond de coulisse (remplissage partiel).

Risque de transfert d’eau vers le mur intérieur.

  • Aux angles du mur, réaliser des jonctions étanches de la membrane d’étanchéité.

Pliage des membranes à l’angle du mur.

Remarque : il existe des profilés d’étanchéité qui assure un raccord étanche entre les membranes aux angles intérieurs et extérieurs.

  • Dans les parties courantes, assurer une jonction étanche entre les membranes (recouvrement (30 cm) ou collage); empêcher la perforation ou le déchirement des membranes.

Cas d’une fondation profonde ou d’un sol extérieur pavé

Sol extérieur pavé ou fondation profonde.

  1. Membrane d’étanchéité.
  2. Joints verticaux ouverts.
  3. Membrane d’étanchéité.

L’étanchéité à l’eau

L’eau qui pénètre dans le mur et arrive dans la coulisse est renvoyée vers l’extérieur un peu au-dessus du niveau du sol extérieur via une membrane (1) et des joints ouverts (2). Les quelques briques de parement qui se trouvent sous terre doivent être emballées sur 3 côtés par une membrane (3) de manière à empêcher l’eau d’arriver jusqu’à la coulisse.

Pour le reste, tout est identique au cas du plancher sur terre-plein.

Précautions supplémentaires lors de l’exécution

Il faut veiller à la continuité de l’isolant de part et d’autre de la membrane d’étanchéité.

Cas d’un plancher sur vide sanitaire

Schéma isolation et plancher sur vide sanitaire.

  1. Membrane d’étanchéité
  2. Joints verticaux ouverts
  3. Membrane d’étanchéité
  4. Bloc isolant
  5. Isolant sous dalle

L’isolation

  • L’isolant sous la dalle (5) freine le transfert de chaleur par convection vers le sol.
  • La continuité entre l’isolation du mur et celle du plancher est assurée par un bloc plus isolant (4) que le reste du mur (bloc de béton cellulaire, de verre cellulaire ou d’argile expansée).

L’étanchéité à l’eau

  • La coulisse est interrompue au-dessus de la fondation. Une membrane d’étanchéité (1) posée « en escalier » et des joints verticaux ouverts (2) dans la rangée de briques de parement juste au-dessus de la membrane renvoient l’eau infiltrée à l’extérieur.
  • La membrane (3) protège le pied du mur contre l’humidité ascensionnelle.Remarque : même si l’isolant sous la dalle n’est pas étanche à l’eau, il n’a pas besoin d’être protégé.
  • contre l’humidité ascensionnelle car il n’est pas en contact avec le sol,
  • contre les eaux de nettoyage car la dalle du plancher le protège,
  • et contre l’humidité de construction car l’isolant est posé par dessous après séchage de la dalle.

Pour le reste, tout est identique au cas du plancher sur terre-plein.


Jonction avec un plancher

Schéma isolation et jonction avec un plancher.         Schéma isolation et jonction avec un plancher.

L’isolant du mur doit être continu au niveau du plancher. Le hourdi doit être placé au ras du mur intérieur.

Ainsi, les différentes fonctions de l’enveloppe sont assurées de la même manière que pour les parties courantes du mur.


Seuil de fenêtre

Schéma isolation et seuil de fenêtre.

  1. Seuil
  2. Châssis
  3. joint d’étanchéité
  4. Membrane d’étanchéité
  5. Isolant
  6. enduit
  7. Tablette
  8. Pattes de fixation

> L’étanchéité à l’eau

  • Le seuil (1) renvoie toutes les eaux qui ruissellent sur le châssis ou infiltrées dans la chambre de décompression vers l’extérieur « loin » de la maçonnerie de parement.
    Le châssis (2) doit donc être posé sur le seuil avec la sortie du conduit de drainage arrivant sur la face supérieure inclinée du seuil.

    Pour bien assurer ces fonctions, le seuil doit :
    • déborder à l’intérieur de la coulisse de 3 cm minimum (5 cm dans un cas avec volet),
    • avoir une pente minimale de 5 % sur sa face supérieure,
    • être muni d’un casse-goute permettant de maintenir les eaux à distance du parement extérieur,
    • être encastré dans la maçonnerie de manière à assurer l’étanchéité de sa jonction avec la maçonnerie (et pour des questions de stabilité),
    • être d’un seul tenant ou avec joints rendus étanches au mastic dans le cas de deux pierres consécutives.
  • Un joint d’étanchéité (3) (fond de joint + mastic) entre le seuil et le châssis empêche les infiltrations à ce niveau.
  • La coulisse est interrompue par le seuil. L’eau qui aurait pénétré par celui-ci ou entre ce dernier et le châssis est renvoyée vers l’extérieur par une membrane d’étanchéité (4) placée sous le seuil et sous la tablette intérieure « en escalier descendant vers l’extérieur ».
    Pour éliminer l’eau qui aurait pénétré dans les battées verticales, il est conseillé de prévoir une membrane d’étanchéité dans le bas de cette dernière (sous le seuil), ainsi que des exutoires de part et d’autre du seuil.

> L’isolation

L’isolant est accolé contre le dormant du châssis ainsi il y a continuité dans l’isolation. Cette disposition s’adapte particulièrement bien lorsque le châssis est placé dans le prolongement de la coulisse isolée, en battée contre la brique de parement.
Le seuil de fenêtre ne peut être en contact avec les blocs intérieurs, l’isolant (5) doit contourner celui-ci et continuer jusqu’au châssis.

> L’étanchéité à l’air

  • Un joint d’étanchéité (7) doit être prévu entre l’enduit et le châssis.

> La stabilité

Les pattes de fixation (8) reprennent les charges propres ou transmises par les menuiseries et les transmettent au mur porteur. À cette fin, de manière à avoir un bon ancrage des pattes de fixation, il faut remplir le creux des blocs de la rangée supérieure de l’allège et des pieds droits de baie avec du mortier ou du béton.
On considère en général que les supports inférieurs reprennent les charges verticales.

Remarque : en principe, des cales de support sont placées sous les montants verticaux des châssis, mais dans le cas d’un seuil en pierre, il faut éviter de trop charger celui-ci en flexion et il vaut dès lors mieux prévoir des pattes de fixation qui reprennent toute la charge.

Précautions supplémentaires lors de l’exécution

  • La membrane d’étanchéité doit être d’un seul tenant; à défaut, les joints doivent être collés ou soudés.
  • Eviter la perforation et le déchirement des membranes.
  • Les pattes de fixation doivent être bien ancrées.

Cas d’un appui métallique

> L’étanchéité à l’eau

Schéma isolation et appui métallique.

  1. Châssis
  2. Tablette.
  3. Joints d’étanchéité.
  4. Seuil métallique.
  • L’appui métallique est imperméable à l’eau, la membrane d’étanchéité sous l’appui est donc inutile.
  • Un joint d’étanchéité entre l’appui et la maçonnerie empêche les infiltrations au droit de cette jonction.

> Pour les autres fonctions, tout reste identique au cas du seuil de fenêtre en pierre bleue.


Ébrasement de baie

Schéma isolation et ébrasement de baie, étanchéité à l'eau.

> L’étanchéité à l’eau

  • Un préformé en mousse à cellule fermée (1) évite le contact du châssis avec la maçonnerie humide. Ce préformé sert également de fond de joint.
  • La pénétration de l’eau dans la coulisse par la jonction entre le châssis et le gros œuvre est empêchée par la battée et par le joint en mastic (2).
    En principe, la battée est de 7 cm pour les châssis bois, PVC et polyuréthane; 4 cm pour les châssis métalliques.
    Remarque : le joint d’étanchéité doit être suffisamment large pour pouvoir reprendre les mouvements entre le châssis et le gros-œuvre (minimum 5 à 8 mm pour un cas standard).

Schéma isolation et ébrasement de baie, étanchéité à l'eau.

> L’isolation

L’isolant arrive jusqu’au ras de la baie. Après la pose du châssis, on injecte un isolant expansé à cellules fermées (3) entre celui-ci et le gros œuvre Ainsi il y a une continuité parfaite dans l’isolation.

Remarque : Dans le cas d’une coulisse très large partiellement remplie, il faut remplir la coulisse intégralement sur 15 à 20 cm (sur tout le pourtour de la baie) afin de permettre, après pose du châssis, l’injection de l’isolant de raccordement.

Schéma isolation et ébrasement de baie et isolation.

> L’étanchéité à l’air

Un joint d’étanchéité à l’air doit être prévu entre l’enduit et le châssis.

> La stabilité

  • Les pattes de fixation (9) reprennent les charges propres ou transmises par les menuiseries et les transmettent au mur porteur. À cette fin, de manière à avoir un bon ancrage des pattes de fixation, il faut remplir le creux des blocs de la rangée supérieure de l’allège et des pieds droits de baie avec du mortier ou du béton.
    On considère en général que les supports latéraux reprennent les charges horizontales (vents, sollicitations dues aux manœuvres, …).

Linteau de baie

Schéma isolation et linteau de baie.

  1. Membrane d’étanchéité
  2. Joints verticaux ouverts
  3. Isolant
  4. Joint d’étanchéité

> L’étanchéité à l’eau

  • La coulisse est interrompue au-dessus du châssis, celui-ci constitue un barrage à l’eau qui s’écoule dans la coulisse. Une membrane d’étanchéité (1) posée « en escalier descendant vers l’extérieur » et des joints verticaux ouverts (2) dans la rangée de briques de parement juste au-dessus de la membrane renvoient l’eau infiltrée à l’extérieur.
    Afin d’éviter la formation de poche d’eau et la perforation de la membrane, l’isolant doit être coupé en biseau (3) de manière à servir de support à la membrane.
    Remarque : une autre solution consiste à placer une membrane juste au-dessus du châssis. Cette solution est parfois choisie lorsque lors du placement des menuiseries, on se rend compte qu’une membrane n’a pas été prévue dans le gros œuvre.

Schéma isolation et linteau de baie, étanchéité à l'eau.

  • Un joint d’étanchéité (4) (fond de joint + mastic) entre la maçonnerie de parement et le châssis empêche les infiltrations à ce niveau.
    Remarque : le joint d’étanchéité doit être suffisamment large pour pouvoir reprendre les mouvements entre le châssis et le gros œuvre (minimum 5 à 8 mm pour un cas standard).

Schéma isolation et linteau de baie, étanchéité à l'eau.

Précautions supplémentaires lors de l’exécution

  • La membrane d’étanchéité doit être d’un seul tenant; à défaut, les joints doivent être collés ou soudés.
  • Les extrémités de la membrane doivent, de préférence, être relevées.
    À défaut, l’eau qui a pénétré dans la coulisse par le mur de parement au-dessus de la baie, peut être drainée latéralement et être évacuée par les joints laissés ouverts en pied de façade.

  • On doit veiller à ce qu’il n’y ait pas de déchets de mortier dans le fond de la coulisse au-dessus de la membrane.
  • Éviter la perforation et le déchirement des membranes.

> L’isolation – l’étanchéité à l’air

Ces deux fonctions sont assurées de la même façon que pour l’ébrasement de baie.

Précautions supplémentaires lors de l’exécution

Il faut veiller à la continuité de l’isolant de part et d’autre de la membrane d’étanchéité.

– – – – – – – – – – – –

Remarque : cette feuille s’inspire des 3 documents suivants :

  • la NIT 188 : « La pose des menuiseries extérieures » du CSTC.
  • « L’isolation thermique des murs creux – Guide pratique du maçon et du menuisier » / FFC.
  • « L’isolation thermique des murs creux – Outil didactique / FFC.