Comparer les performances des fluides frigorigènes


Principes

Les différents fluides frigorigènes ne sont pas égaux devant le froid. Certains ont une meilleure efficacité frigorifique que d’autres; c’est pourquoi il est important d’évaluer leurs différences.

Coefficient de performance instantané COP

Cycle frigorifique classique.

L’effet frigorifique ou COP est défini par la relation suivante :

COP = Puissance frigorifique / Puissance électrique absorbée

Où :

  • Puissance frigorifique : puissance utile à l’évaporateur [kWf];
  • Puissance électrique absorbée : puissance électrique par le compresseur [kWe].

Production frigorifique spécifique

Le type de fluide frigorigène influence le COP. La recherche d’un fluide frigorigène à forte production frigorifique par volume de gaz aspiré au niveau du compresseur est primordiale. Un fluide frigorigène est d’autant plus performant que sa chaleur latente d’ébullition (ou d’évaporation) à l’évaporateur et un faible volume spécifique des vapeurs à l’aspiration.

La production par m³ de fluide aspiré sous forme de gaz au compresseur est donnée par la relation suivante :

Production frigorifique spécifique = Chaleur latente d’ébullition / Volume spécifique des vapeurs à l’aspiration

[kJ/m³]

Où :

  • La chaleur latente d’ébullition est exprimée en kJ/kg ;
  • Et le volume spécifique des vapeurs en m³/kg.

Cette production frigorique par m³ de gaz aspiré est donc inversement proportionnelle à la cylindrée des compresseurs et donc de leurs coûts. Il en résulte que les quantités de fluides frigorigènes, pour une même puissance frigorifique, peuvent être plus importantes d’un type à l’autre de fluide.


Comparaison

L’exercice consiste à comparer plusieurs fluides frigorigènes entre eux afin de déterminer leur production frigorifique spécifique et leur COP.

Pour ce faire, on se propose d’étudier, à travers d’un exemple et succinctement, les fluides suivants :

  • Le R22 ou fluide pur HCFC encore présent dans beaucoup d’installations existantes à faible ODP (ODP = 0,055) mais à GWP important (GWP = 1700) ;
  • Le R404A ou mélange de HCFC majoritairement utilisé dans les nouvelles installations de froid commercial sans impact sur la couche d’ozone (ODP = 0) mais à GWP important (GWP = 3260) ;
  • Le R507 ou autre mélange de HFC utilisé régulièrement dans les nouvelles installations.

Hypothèses :

  • Puissance frigorifique utile nécessaire : Pfrigorifique = 100 kW;
  • Température de condensation = 40°C;
  • Température d’évaporation ou d’ébullition -10°C;
  • Sous-refroidissement = 5°C;
  • Surchauffe = 5°C;
  • rendement du compresseur ηcomp = 0,85;
  • rendement du moteur électrique ηmoteur_élec = 0,85;
  • pas de pertes de charge ni d’échange thermique au niveau des conduites;

Cycle théorique :

R22

En fonction des hypothèses prises, on peut établir le graphique suivant qui permet de déterminer les valeurs :

  • d’enthalpie au niveau de l’évaporateur : soit Δhévaporateur = 405 – 244 = 161 kJ/kg;
  • énergie théorique de compression : soit Δhcompression = 443 – 405 = 38 kJ/kg;
  • de volume massique à l’aspiration : soit Vmassique_aspiration = 0,067 m³/kg.

Calculs :

  • Pour une puissance frigorifique demandée de 100 kW, le débit massique de R22 est de :

débitmassique = Pfr / hévaporateur [kg/s]

débitmassique = 100 [kJ/kg] / 161 [kW] = 0,62 kg/s ou 2 236 kg/h

  • Le volume réel à aspirer par le compresseur est de :

Volumeréel = débitmassique / volumemassique_aspiration

Volumeréel  = 0,62  [kg/s] / 0,067  [m³/kg] = 0,04 m³/s

soit en une heure un volume aspiré au niveau du compresseur de 0,04 x 3 600 = 150 m³/h

  • Le rendement volumétrique du compresseur est de :

ηVolume = 1 – (0,05 x τ)

Où :

τ  = HP / BP (en pression absolue)

ηVolume  = 1 – (0,05 x HP / BP)

ηVolume  = 1 – (0,05 x 15,3 / 3,55) = 0,78

  • Le débit théorique nécessaire est de :

Débitcompresseur = Volumeréel / ηVolume

Débitcompresseur = 150 / 0,78

Débitcompresseur = 190 m³/h

  • La puissance électrique du moteur du compresseur est de :

Pelectr_absorbée = débitmassiqueΔhcompression x (1 /  ( ηcomp x ηmoteur_elec x ηVolume))

Pelectr_absorbée = 0,62 x 38 x (1 / (0,85 x 0,85 x 0,785))

Pelectr_absorbée = 41 kW

  • Enfin, la performance énergétique (ou effet frigorifique) de la machine est de :

COP = Pfrigorifique / Pelectr_absorbée

COP = 100 / 41 = 2,4

R404A

Comme pour le R22, avec les mêmes hypothèses, on effectue les calculs amenant à déterminer le COP de l’installation. Le tout est consigné dans le tableau de synthèse ci-dessous.

R507

Comme pour le R22, avec les mêmes hypothèses, on effectue les calculs amenant à déterminer le COP de l’installation. Le tout est consigné dans le tableau de synthèse ci-dessous.

Synthèse

Pour les 3 fluides étudiés ci-dessus, on établit un tableau synthétique qui nous permet une comparaison des principales caractéristiques et performances des fluides réfrigérants :

Caractéristiques et performances des fluides frigorigènes

R22

R404A

R507

Haute pression [bar]

15

18,2

18,8

Basse pression [bar]

3,6

4,3

4,5

Taux de compression (τ = HP / BP)

4,3

4,2

4,2

Rendement volumétrique ηVolume

0,78

0,79

0,79

Température de fin de compression [°C]

70

50

53

Volume spécifique à l’aspiration du compresseur [m³/kg]

0,067

0,048

0,046

Débit massique du fluide réfrigérant [kg/s]

0,62

0,85

0,88

Volume réellement aspiré [m³/s]

0,04

0,04

0,04

Volume théorique [m³/h]

191

185,3

185,5

Puissance électrique [kW]

41

39

50

COP

2,4

2,6

2

Diminution des performances

– 8 %

– 23 %

Conclusion

Les fluides frigorigènes étudiés présentent beaucoup de similitudes. On voit néanmoins que le COP du R404A est meilleur; ce qui signifie que dans des conditions idéales et identiques (en régime permanent et stable par exemple), pour une période de temps identique, la consommation d’une machine :

  • au R22 est 8 % plus élevée;
  • au R507 est 23 % plus élevée.